

Anaerobic Pathways

Carbon and Energy Source (Substrate) used

COD: Sulphate Ratio > 0.67 Quality (cost, availability, rest-pollution) Competition for substrate

Toxicity of Waste Stream to Microorganisms

Acidity H₂S(g) concentrations Dissolved (trace) metal concentrations

Type of Bioreactor and Process Design

use of separate, successive reactors

Case Studies

• Problem

- Treatment Process
- Results
- Costs
- Advantages/Disadvantages
- Future Needs/Improvements
- References

- Landau Coal Mine near Witbank (South Africa)
- 20-10³ t/day raw coal: product 15.5-10³ t/day coal discard 3.0-10³ t/day
- 72.5 ha dump with 4.3-10⁶ t coal discard
- Coal Discard Leachate: pH 1.8
 SO₄ 8,342 mg/L
 Fe 2,500 mg/L
- SO₄: 24 t/day enters drainage network

Treatment Process Stages:

CaCO₃ Handling and Dosing System
 CaCO₃ Treatment

Biological Sulphate Reduction

CaCO₃ Treatment Stage:

iron reduction sulphide and iron oxidation FeS, Fe-hydroxide and gypsum precipitation

Sulphate Removal Stage:

biological sulphate reduction removal of residual O.M. CaCO₃ precipitation

CaCO₃ Treatment Stage		Feed	Treated
рH		1.8	6.6
Acidity*	mg/L	7,300	100
SO ₄	mg/L	8,342	1.969
Cl	mg/L	27	30
Fe(II)	mg/L	2,500	<56
Fe(tot)	mg/L	2,500	<56

Bioreactor Case Study – Results

Sulphate Reduction Step		Feed	Treated
рН		7.2	7.7
Alkalinity *	mg/L	60	2,065
SO ₄	mg/L	2,203	198
HS	mg/L	0	606
Ethanol	mg/L	690	0
Acetate	mg/L	0	218
Formate	mg/L	0	5
VSS	mg/L	0	9,000

Bioreactor Case Study – Results

• Partial and Complete Oxidation of Substrate by SRB: $2C_2H_5OH + 2H^+ + SO_4^{2-} = 2CH_3COOH + H_2S(g) + 2H_2O$ $2CH_3COOH + 4H^+ + 2SO_4^{2-} = 4H_2CO_3 + 2H_2S(g)$ +

 $2C_2H_5OH + 6H^+ + 3SO_4^{2-} = 3H_2S(g) + 4H_2CO_3 + 2H_2O_3$

- Theoretical COD/SO₄ ratio is 0.67
- Measured COD/SO₄ ratio between 1.0 and 1.2
- Theoretical Alk./SO₄ ratio (mass) is 1.04
- Measured Alk./SO₄ ratio (mass) ~ 1.0

• Capital Cost BSR-plant treating 2 kg SO₄ per m³ water R2.3^{*} million per 1,000 m³/day

• Operating Cost R2.54^{*} per m³ water

(which includes R2.22^{*} per m³ water

for Energy and Carbon source)

* R1=USD 0.105 (Nov., 2002)

Bioreactor Case Study – Advantages/Disadvantages

- inexpensive SO₄ removal to 2,000 mg/L with CaCO₃
- acid neutralization

additional SO₄ removal to 200 mg/L by sulphate reduction

 CO₂(g) and H₂S(g) produced, are recycled and used in other steps of the treatment process

Bioreactor Case Study – Future Needs/Improvements

Development and Testing

of

Alternative Sources of Carbon and Energy

CSIR, Division of Water, P.O. Box 295, Pretoria 0001, South Africa

Website: www.csir.co.za

Sulphate Reduction Rates

• Bioreactor:	12-30	g/(L,day)
 Constructed Wetland: 	0.3-197	mg/(L,day)
 Alk. Producing Systems: 	0?	mg/(L,day)
• Permeable Reactive Barrier:	10.5-15.3	mg/(L,day)

Dissimilatory sulphate reduction by SRB:

 $4CH_{3}OH + 3SO_{4}^{2-} = 4HCO_{3}^{-} + 3HS^{-} + H^{+} + 4H_{2}O_{3}^{-}$

- Sulphide oxidized to elemental sulphur (S) by:
 - Chemotrophs: $2HS^{-} + O_2(g) + 2H^{+} = 2S(s) + 2H_2O$
 - Phototrophs: $2HS^{-} + CO_{2}(g) + 2H^{+} = 1/6C_{6}H_{12}O_{6} + 2S(s) + H_{2}O_{6}$
- Sulphide removal also by:

precipitation as metal sulphides (MeS)

- H₂S (g) stripping

