Waste Rock Management at Heath Steele

Noranda Inc.

Presentation Outline

- Site location
- Site background
- Waste rock management options
 - Removal of waste rock
 - Dry covers
 - Layering waste piles with limestone
 - Do nothing option
- Collection and treatment

Heath Steele Site

Heath Steele Mine/ Mill Area

Heath Steele Site History

- Mining commenced in 1957
- Temporary closures on several occasions due to metal prices
- Long recent closure from 1983 to 1989
- Mine reopened in 1989 and closed in 1999 due to depleted ore reserves

Heath Steele Operations

- Three mines:
 - B-Mine- Underground and open pit
 - C-Mine- Underground and open pit
 - Stratmat- Underground and open pit
- Mill- 2700 tonnes/day producing lead, zinc and copper concentrates

Closure Objectives

- Protect public health and safety
- Minimize environmental impacts as permitted by cost effective technologies available today
- Allow for productive use of mine site and surrounding areas where practically possible

Mine Waste

- Waste rock was used widely on the site for roadways, construction pads and pipe beds
- The site is spread out over a large area with two Salmon streams running through the site
- AMD from waste rock is very strongly contaminated
- Bedrock is very fractured so collection of contaminated runoff is difficult

Waste Rock Management Options

Existing piles:

- Leave waste rock in place, as is and collect runoff for treatment
- Excavate waste rock and move it to open pits
- Cover waste rock with dry cover

New Piles:

Incorporate limestone into pile construction and return waste rock to pit for closure

Leaving Waste Rock As Is

- Some areas can not be diverted from the collection system
- Some areas have too much waste rock to move economically
- The waste rock in these areas is graded for aesthetics and systems designed to collect the AMD contaminated runoff for treatment

Mill Area

Moving Waste Rock

- Some watersheds can be diverted from the collection system if they are cleaned
- Waste rock from these areas is excavated and moved into one of the open pits
- Pits will be covered with till when they are full to divert water. The area is the limed to reduce the effects of any residual waste rock
- May take several years for ground water to flush

C-Zone Area

Dry Covers

- Pile 7/12 (MEND project)
 - Four layer cover; sand/ saturated till/ sand and gravel/ erosion protection
 - Saturated till provides an oxygen barrier
 - Oxygen levels in the pile were very low, much less than 1%
 - Seepage volumes from the pile were reduced to only 2% of precipitation incident on the pile
 - Seepage still requires treatment prior to release
 - Cost is high, \$28.00/ sq. m, excluding engineering and quality control costs

Pile 7/12- Engineered Cover

Stratmat Waste Rock Pile

- Design specified that the pile would be built in layers with 2-3 ft. of limestone added between each layer
- Limestone would prevent AMD generation
- Waste rock was to be returned to the pit and covered at closure
- Pile generated AMD very quickly and pit was required as buffer storage for collection and treatment of the runoff
- Perpetual collection and treatment is now the accepted closure plan for the site

B-Mine Area

LSTR River Area

AMD Collection and Treatment

- Ditches, ponds and pumpstations must be constructed to collect AMD from waste rock (10 pumpstations)
- AMD must be treated prior to release to the environment (1 million cubic meter buffer storage pond and 20,000 L/min HDS treatment plant at Heath Steele)

Process Automation

- All AMD pumpstations are on a PLC highway with the treatment plant
- All non-normal events on the highway are alarmed to a text pager via auto dialler program
- PLC highway can be accessed via high speed satellite internet connection for off site control

Heath Steele HDS Plant

Heath Steele Treatment Plant

Cost of Plant	\$7 million
Cost of water management	\$5 million
Treatment cost (reagents, power)	\$0.15/ cubic meter
Maximum feed rate	20,000 L/min
Clarifier diameter	100 ft.

HDS Plant Capital Costs

Water Treatment Plant Capital Costs

\$millions = 4.20866 + 0.143350 Cu m/min

S = 0.726550 R-Sq = 95.0 % R-Sq(adj) = 94.3 %

Thank You Noranda Inc. noranda