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Stability of Mine Rock Slopes

Mine rock piles placed at their angle of repose for the 
fresh mined rock have an intrinsic stability at the time 
of placement.  The conditions determining stability 
may change with time as a result of time dependent 
changes in the strengths along potential failure 
surfaces and the forces, principally water pressures, 
acting on these potential failure surfaces. 
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Weathering
• The time dependant change in geotechnical 

characteristics of a rock results from:
• Physical Weathering - e.g. thermal expansion 

and contraction, abrasion, salt and ice crystal 
growth; slaking due clay mineral expansion and 
contraction during wetting and drying; crushing of 
contact points during stress re-adjustment:

• Chemical Weathering - e.g. geothermal 
alteration; oxidation; hydrolysis; dissolution; 
diffusion; and precipitation

• These weathering processes may result in an 
increase or a decrease in rock strength, and an 
increase or decrease in permeability
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Pre-mining Alteration

• The natural geothermal processes that are 
associated with sulphide ore genesis alter alumino-
silicate minerals in the rock mass. 

• Sericite-clay and chlorite-epidote altered zones 
surrounding such ore bodies often exhibit reduced 
strength properties and an increased propensity 
to slake when exposed to air and water. 

• Additional alteration occurs as a consequence of 
exposure of the mineral deposits to air and water and 
the resulting oxidation of pyrite and further hydrolysis 
of the aluminosilicates. 
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Reference: Hoek, Read, Karzulovic and Chen (2000)

Relationship between intact rock strength and degree of alteration.
(Reference: Hoek, Read, Karzulovic and Chen (2000))
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Mineral Alteration
• Under non-acidic conditions, primary minerals like feldspars 

weather to form clay and amorphous hydroxide minerals, 
such as kaolinite and gibbsite

• Under acidic and sulphate-rich conditions, produced by 
pyrite oxidation, aluminosilicates weather far more rapidly. 
Aluminum is highly soluble under these conditions. 

• Acid leaching is concentrated on weak zones such as 
fractures in rock particles and mineral cleavages causing a 
breakdown of the rock fabric. 

• When this occurs over natural sulphide bodies it results in 
the production of gossan or oxide zones, often with high 
percentages of clays, including smectite clays. 
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Consequence of Mining Pyritic Rock
• Mining of altered and acid-generating sulphide containing waste 

rock increases, by several orders of magnitude, the surface 
area of rock surface exposed to air and water resulting in hugely 
increased rates of slaking (physical weathering) as well as 
geochemical weathering.

• Hydrolysis, fragmentation and breakdown of the rock fabric, 
results in an increase in the percentage of fines, including clays.

• Precipitation, when it occurs, may result in temporary or durable 
cementation.

• This in turn results in changes in both the permeability and 
shear strength of the mine rock
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Oxidation Products Mass Balance

1% by weight of sulphide sulphur can produce:

3.2% by weight of sulphuric acid and this can hydrolyze
4.3% by weight of Feldspar to secondary minerals such 
as clays and jarosites.

The sulphur in rock containing 5% by weight sulphide 
sulphur can hydrolyze up to 430 lbs/ton (21.5%) of mine 
rock.
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Typical moderately hydrothermally altered 
andesite with ~25% feldspar, 2% sulfide 
sulfur and 2.5% hydrothermal clay/ sulfate 
mineral content [alteration index ratio of 
10.8]

Complete pyrite oxidation of typical andesite starting - 
ending with 18.5% feldspar, 0% sulfide sulfur and 11% 
secondary minerals [alteration index ratio of 1.7]

Note: average feldspar content in andesites ~25.9%; 
average sulfide sulfur in Middle, Sugar Shack South & 
Sugar Shack West dumps is 1.5% (std dev = 0.9%)

Partial pyrite oxidation of typical andesite - ending 
with 22.7% feldspar, 1% sulfide sulfur and 6.8% 
secondary minerals [alteration index ratio of 3.5]

Based on an open system equation:  2H2SO4 + KAlSi3O8 + 3Fe3+  + ... <-> KFe3(SO4)2(OH)6 + (Al,Si)2O5(OH)4 +…
For every 1% sulfide sulfur oxidized; ~4.3% feldspar can be altered to secondary minerals.  Therefore the change in the alteration index ratio as 
a result of sulfide oxidation can be represented by:
Delta alteration index ratio = % feldspar - (%sulfide sulfur x 4.3)/ % secondary minerals + (% sulfide sulfur x 4.3)

Note: average feldspar content in andesites 
~26%, average sulphide sulphur in waste 
dumps is 1.5% (std dev = 0.9%)
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Knowledge from Cu Heap Leaching
“The acid in the leach liquor attacks gangue minerals in the 
region of the dump or heap were it is generated.  The rates of 
attack depend on the local pH and vary among the numerous 
gangue minerals present…dump leach liquor pH typically ranges 
between pH 2.6 and 2.9.
Acid attack of gangue minerals also causes rock decrepitating, 
meaning loss of rock physical integrity.  Consequently the 
average rock particle size and permeability to both percolating 
leach solutions and air flow tends to decrease with extended 
leaching time.
New mine waste dumps are most often gray in color and have 
coarse, rock surfaces.  Very old dumps, measured in leaching 
years, are stained yellow from jarosite and often weathered to a
smooth, near soil, surface texture.” (Bartlett, 1998)
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Ore fragment after 
extensive 
chemical 
weathering along 
fissures due to 
internally 
generated acid 
from pyrite 
oxidation  After 
Bartlett, 1998.

Unreacted Core

Reacted Zone

Weathering along 
fractures and fissures

Diffuse Reaction Zone

“The rock leaching kinetics are complicated by changing microporosity, 
pH, solution concentrations of several species, and chemical weathering 
and disintegration of the rocks by the generated sulfuric acid.”
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More Observations From Dump Leaching

• The average rock particle size, and permeability to 
both percolating leach solutions and airflow, tends to 
decrease with extended leaching time.

• This is a major factor preventing adequate aeration 
and continued economic leaching as the mine dumps 
age.

• Basic igneous host rocks are generally less resistant 
to acid weathering and disintegration than more 
siliceous rocks

• Ores that contain clay, or minerals that weather to 
clay, rapidly lose permeability
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Observations from Bingham 
Canyon Leach Dumps

• The acidic environment existing within waste dumps cause 
rapid breakdown of the intrusive rock into clay and claylike 
material

• Dumps containing large quantities of intrusive rocks increase 
in clay content and iron precipitate content and decrease in 
surface and interior permeability with time

• Debris flows result from the flow of water over the crest of 
waste dumps . The rate of waste movement is generally on the 
order of several hundred feet per hour

• Debris flows occur in old dumps having low surface and 
interior permeability due to the breakdown of intrusive rock 
and deposition of iron salts from leach solution

(Pernichele & Kahle, 1971 )
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(after Simons and Albertson, 1960)

20

25

30

35

40

45

0.01 0.1 1 10 100

Mean Diameter (inches)

A
n

g
le

 o
f R

ep
o

se
 (d

eg
re

es
)

Rounded to Sub-rounded
Angular

Very Rounded

Very Angular

Crushed Rock



20

Fresh Rock
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• The generation of clay size fines by physical weathering may 
reduce the friction angle by 2 or 3° (Seedsman and Emerson, 
1985). This reduction does not occur gradually, as the clay 
fraction increases, but relatively suddenly, at a clay content of 
about 10%. At this clay content, the larger particles in the 
spoil are no longer in direct contact which each other, but tend
to be supported in a matrix of clay-sized particles. The 
weathering may occur at the surface of the spoil piles to a 
relatively shallow depth, or deep within the spoil piles due to a 
fluctuating water table. 

• Chemical weathering reduces the friction angle by 6 to 12°, 
and is a long-term process (Taylor and Spears, 1970; Taylor, 
1984). 

Knowledge from Coal Spoil Studies
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Observations From Natural Slopes

In addition to the general mechanical properties, a 
remarkable strength loss at the dissociation front, and 
the increase of smectite at the oxidation front of 
mudstone, could lead to the generation of landslides.  
Indeed, landslides with sliding surfaces along or 
beneath the oxidation front are quite common in 
mudstone areas.  ----- these rocks weather very 
rapidly if the environment is artificially changed.

Chigira and Oyama (1999)
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Triaxial test results - weathered Ankara andesites
(after Pasamehmetoglu et al., 1981)
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Ref: Lepps, 1970
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Reference: Nieble, Silveira and Midea, 1974
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Ref: Vallejo and 
Mawby, 2000

Changes in porosity of
the sand-clay mixtures

100       80         60         40         20        0

0 20         40         60         80      100

0.6

0.5

0.4

0.3

0.2

0.1

0

Percentage by weight of sand (Ws) and Clay (Wc)

Ws

Wc

Po
ro

si
ty

 o
f 

th
e 

m
ix

tu
re

78

0.18 B

0.35

0.5 C

q

Theoretical
Laboratory

σn = 150 kPa 



30

Two failures with run-outs observed extending from toe of rock pile.
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View of run-out tongues showing coarse nature of most mine rock.
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9/17/00

Paste pH = 2.2
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9/17/00
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Characterization & Monitoring Data
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Characterization & Monitoring Data
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Representative Water Quality for 
Examples on Next Plot
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Percent Smaller than 4 Mesh (% < #4) Fraction versus Friction Angle (� )
(12" Shear Box Results)
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