Paste Backfill: Influence on Mine Water Quality

Peri Mehling
Mehling Environmental
Management Inc.
Sponsored by MEND3/MAC

MEHLING ENVIRONMENTAL MANAGEMENT INC.

Definition of tailings paste

- ◆ "A dense, viscous mixture of tailings and water that, unlike slurries, does not segregate [except when being transported]" (Verburg, 2002)
- ◆ Essentially 'thickened' tailings
- ◆ Consistency of wet concrete
- With or without additives such as Portland cement

Purpose - Economics

- Use of existing waste

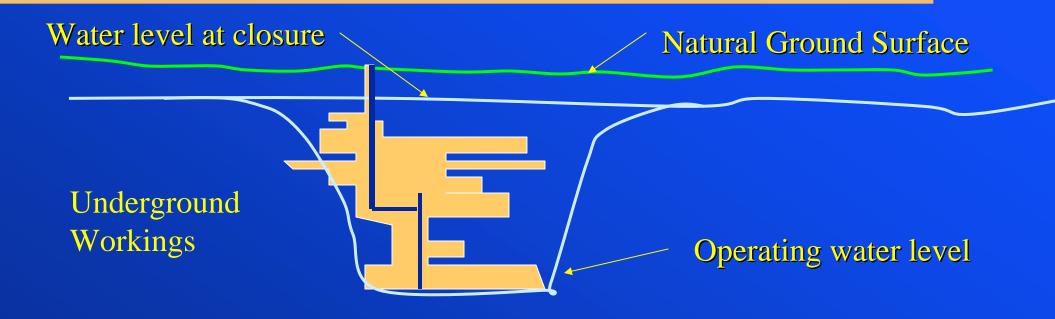
 (tailings) for structural
 stability in
 underground mines
- ◆ Enhances ability to remove ore pillars
- Added costs of cement and pumping

Potential Environmental Benefits

- ◆ Reduction in volume of tailings requiring surface disposal
- Reduction in potential for tailings to oxidize or leach
 - Little free water available for leachate generation
 - Ground water preferentially flows around backfill, not through it
 - Less available oxygen
 - Addition of cement provides extra NP
 - Potential for flooding at closure (reduced sulphide oxidation)

Importance of Geochemistry

- Conditions
 underground may allow
 reactions of tailings
 minerals or binders,
 producing ARD or
 soluble contaminants
- ◆ Addition of cement provides an alkaline environment, but for how long?

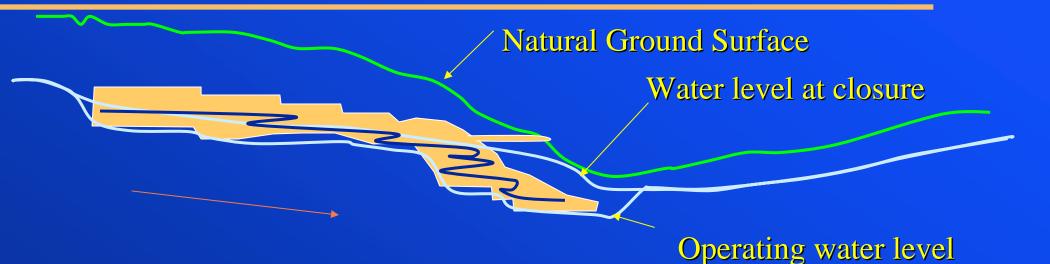


MEHLING ENVIRONMENTAL MANAGEMENT INC.

Importance of Geochemistry

- Reactions can reduce the long term strength of the paste
 - Reduced mining efficiencies/safety
 - Potential subsidence at closure
 - Changes to ground water flow patterns

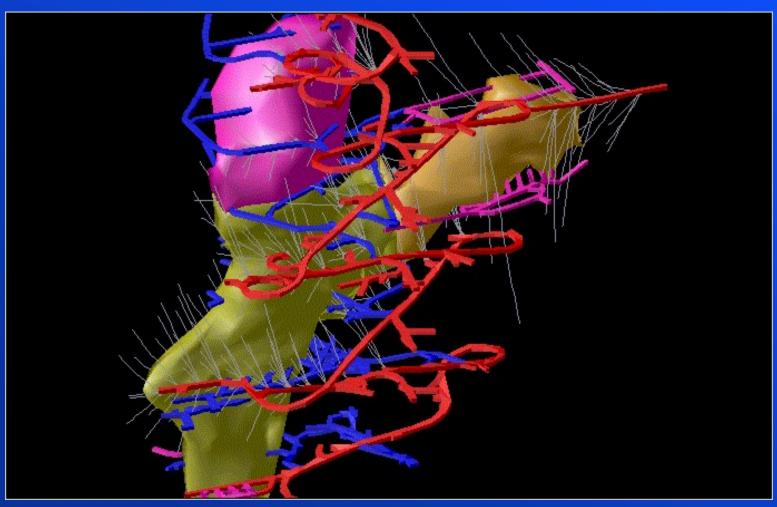
Underground Mine



- Floods at closure
- •No immediate ground water discharge

- Potential for a contaminant plume, albeit moving slowly
- Out of sight, out of mind"

MEHLING ENVIRONMENTAL MANAGEMENT INC.


Sidehill Mine

- Portion of mine flooded at closure, releasing stored oxidation products
- Portion of mine remains drained, continued production of oxidation products
- Potential for uncontrolled surface discharges

MEHLING ENVIRONMENTAL MANAGEMENT INC.

Drill holes

MEHLING ENVIRONMENTAL MANAGEMENT INC.

So is the influence of paste backfill on mine water quality being studied?

◆ Contacted 37 underground mines to date

Paste Backfill

- ◆ 16 use or propose paste backfill
- ◆ 11 use cement additives varying from 2 to 6.5%
- ♦ 5 use no additives

◆ Of these, only 4 appear to be doing water quality predictions

Other Backfills

- ◆ 15 underground operations use unthickened tailings, waste rock or aggregate mixed with cement
- ◆ Cement content varies from 2 to 10%
- ◆ Appears only 1 is doing water quality predictions

Surface Paste Applications

- ◆ 7 mines are using paste tailings on the surface
- ◆ 6 are doing water quality predictions

Extreme Alkalinity

Backfill of 4 to 8% cement added to inert river aggregate

• Stope monitoring: pH 12.4

Diss. Sb 5.0 mg/L

despite acid generating waste rock that reached pH 4 in humidity cells within 5 weeks

Extreme Acidity

Mine A	MA-F	MA-Y	MA-R
	Fresh Paste	Yellow Paste	Red Paste
Paste pH	7.91	2.93	2.33
Fe sulfides	11.81	6.5	4.08
S Total	14	12.4	11.9
SO4	1.02	14.45	21.4
CO2	5.32	1.21	0.29
S2-	13.66	7.56	4.77
SAP	426.88	236.98	148.96
CNP	120.64	27.44	6.58
CNNP	-306.24	-209.54	-142.38
CNP/SAP	0.28	0.12	0.04

Bernier and Li, 2003

Paste Characterization

- ◆ Static (ABA) analysis
- ◆ Chemical analysis (metals)
- ◆ Mineralogical analysis
- ◆ Short term leach tests (SWEP, leach extraction)
- ◆ Long term kinetic tests

Kinetic Test Methods (cemented paste)

- **♦** Cubes
- ◆ Intact concrete test cylinders
- ◆ Crushed
- ◆ Mass and surface reaction
 (reported both as mg/kg/week and mg/cm²)

Key Findings

- ◆ Paste can still be very reactive
- ◆ Surface areas are critical
 - Surface spalling (SRK Crandon)
 - Weathering rind (Bertrand, SRK)
- Preferential leaching of neutralizing minerals under both subaerial and submerged conditions (Venburg, 2000)

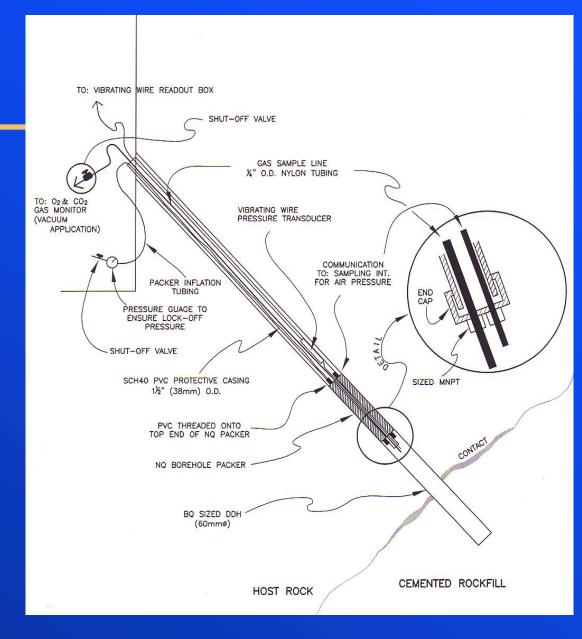
Mine Water Quality Predictions

- ◆ Few published predictions with underground paste
- ♦ New or recently proposed mines
- Varying approaches and assumptions
 - Cured paste backfill considered likely to act as a hydraulic barrier to groundwater flow (formation of more stable minerals, reduced opportunity for ingress of solutions)
 - Interaction between mine water and paste expected to be limited to diffusion-controlled exchange of chemicals.

Water Quality Predictions

- ◆ Approaches and assumptions (cont'd)
 - Release of contaminants expected limited by the rate at which oxygen could be transported into the backfilled stopes.
 - Potential for oxygen ingress and sulphide oxidation balanced against presence of neutralizing minerals.
 - Oxygen ingress limited by diffusion
 - Oxygen freely available to stope walls
- ◆ Minimal field validation (limited time frame)

Key Factors for Mine Water Prediction


- ◆ Cement chemistry (or other additives)
- ◆ Oxygen availability/ Available reactive surface area
- ♦ Hydrogeology (flushing of soluble products)
- ◆ Paste breakdown (and subsequent enhancement of oxygen access/flushing)

Oxygen availability

- ◆ Limited to diffusion?
- ♦ What surface areas are exposed?
 - Internal gaps in paste mass
 - Gaps against underground walls
 - Gaps between successive paste campaigns
 - Links between stopes
 - Exploration and underground drillholes

Gas Sampling

- Operating mine
- **♦** Active ventilation
- ◆ Ram-placed backfill
- ◆ 4 to 8% cement
- Partially isolated stope
- ◆ Reactive sulphides in stope wall

MEHLING ENVIRONMENTAL MANAGEMENT INC.

Gas Sampling Results

Sampling Interval Length (m)	Contact Sampled	O ₂ (%)	CO ₂ (ppm)
9.70	Both	17.9	0
5.20	Backfill only	19.0	0
3.90	Hangingwall	20.6	100
7.11	Footwall	20.2	0

Preliminary Conclusions

- ◆ Given costs and problems associated with poor mine water quality, need to better understand the underground scale and time effects.
- ◆ Use of paste backfill appears to be beneficial to the mine operation, but...
- ◆ The influence of paste backfill on short and long term mine water quality needs to be better understood.

Information Gaps identified to date

- Oxygen availability underground (Stope and Mine Scale)
- **♦** Reactive Surface Areas
- ♦ Hydrogeology/flushing
- ◆ Cement chemistry (and other additives)
 - rates of dissolution of cement NP (loss due to flushing versus acid neutralization)
 - thermodynamic database

Information Gaps identified to date

- ◆ Monitoring of stope water quality evolution
 - alkaline to acid
- ◆ Long term monitoring to confirm predictions
- (some data compiled by mines, but little published or publicly available)