

Acknowledgments

- BCWLAP
- Gerry O'Hara- Golder Associates
- Peter Healey SRK Consulting
- Pat Bryan Associate Consultant
- Terry Johnson Mine Manager

Presentation Outline

- Geology
- Historical Water Quality
- Precipitates
- Comparisons with Similar Sites
- 2002 Plug Test
- Post Test Water Quality
- Conclusions

Britannia Mine Geology - 1

Britannia Mine Geology - 2

Fig. 3. Longitudinal Section Britannia Mine.

Britannia Mine Geology – 3

Jane Basin, looking SW

Volcanic-associated massive sulphide deposit

- •dacites > andesites
- •clastics and tuffs

Ore minerals

- pyrite>>chalcopyrite>
 sphalerite>>galena,
- •no pyrrhotite.

Gangue minerals

quartz, chlorite/biotite, anhydrite, siderite, barite

Historical Copper Data – 2200 Level

2200 - Seasonal Flows and Copper Concentrations (1945 to 1952)

Historical Copper Data - 4100 Level

Britannia Mine Water Quality

Stn.	Averages, pre-2001 chemistry								Dist. from	Av. flow
	рН	SO4	Al	Cd	Cu	Fe	Mn	Zn	mine, km	m3/ day
2200	3.1	1088	42	0.19	59	31	3.6	29	1.5	2783
4100	3.8	1528	26	0.09	18	4.5	4.2	21	5	9704

^{*} Concentrations are in mg/L

Data compilation courtesy BC MWLAP and SRK

Britannia Mine Geochemistry

- Differences between 4100 and 2200 due to dilution of some unknown mine water.
- pH > 3 (at least since 1972)
 - Fe and Al precipitation may act as buffer.
 - ?Lack of pyrrhotite
- During mining, with fresh air and fresh mineral surfaces, 2200 Cu was 1500+ mg/l.

Jane Creek before Dec '01

Geochemistry of the 4150 Sludges

Whole rock:

- 57 % Fe₂O₃
- 2 % Al₂O₃
- 38 % loss on ignition

ICP metals (ppm, dry wt)

- Cu 4382,
- Zn − 360
- \odot Cd <0.8,
- Pb 181
- Fe 107,000

Iron hydroxide sludge, 4150 level

Britannia compared to others

Anyox adit drainage

Tulsequah Chief:

pH - 3.0 Cu - 33.5

Fe - 34 Al - 22

Zn - 63 SO₄ - 997

(after SRK Consulting, 1992)

Anyox:

pH - 2.8 Cu - 2.3

Fe - 275 Al - 48

Zn - 5 $SO_4 - 3500$

(Environment Canada data to 2000)

* Concentrations in mg/L

Release of Water During 2002 Plug Test

Plug Tests

pН

Sulphate and Copper

Iron

Comparison of Pre-Plug and Post-Plug Test Concentrations

Conclusions

- Flooded mine water had lower pH and higher than average sulfate and metal concentrations compared to pre-plug test values, consistent with the leaching of stored acidic salts
- Higher than average sulphate and metal concentrations persisted for 2 to 3 months following the test
- Concentrations of sulphate, aluminum, copper and iron were below average 4 to 10 months after the test, indicating effects of flooding were relatively short duration