Selection and Implementation of a Dry Cover System at Whistle Open Pit Mine

Quentin Smith and Lisa Lanteigne Inco Ltd

Outline

- History/Background
 - Description of background studies and modelling
- Selection of closure concept
- Dry cover trials

- Selection of barrier material
- Description of final cover design
 - Current Progress

Background/History

- Open pit mining (nickel) between 1988-1991 and 1994-1998
- 7 Mt of waste rock on surface 80% is mafic norite, avg. S of 3%
- Several acidic seeps developed

- Whistle Mine ~60 km NW of Sudbury
- Canadian Shield region numerous bedrock outcrops and lakes

Whistle Mine Waste Rock Study 1997 MEND 1.41.4 – Conclusions

- The NE pile is constructed of very coarse waste rock (2.5% passing 2mm) and has a very high permeability (>10-2 cm/s)
- Porewater has low pH (3.8-4.1) and very high concentrations of sulphate (5,400-18,100mg/L), Al (166-878mg/L), Ni (438-954mg/L)
- Water quality in seepage discharging from the toe of the dump is generally more dilute (e.g. SO₄ 1,800-5,400 mg/L) due to contribution of runoff
- Majority of runoff from the site is surface water with 'little' groundwater seepage entering sensitive receiver

SENES Model 1997 Lime Addition

- No Lime Addition
 - Initial increase in sulphate and metals due to release of stored acidity
 - Neutral pH conditions reached after ~100 years
- Lime Addition (1 kg/tonne)
 - Lime addition maintains neutral pH conditions throughout 200 year modeling period
 - No significant improvement using higher lime addition
- Similar long-term water quality for all three scenarios (0, 1, 2 kg/tonne)

Closure Concepts

- Minimal options for closure due to proximity of Lake Wanapitei
 - **3** km East of mine
 - WFN
 - Post Creek
- Prominent environmental issues
 - Containment dam failure

Remote location

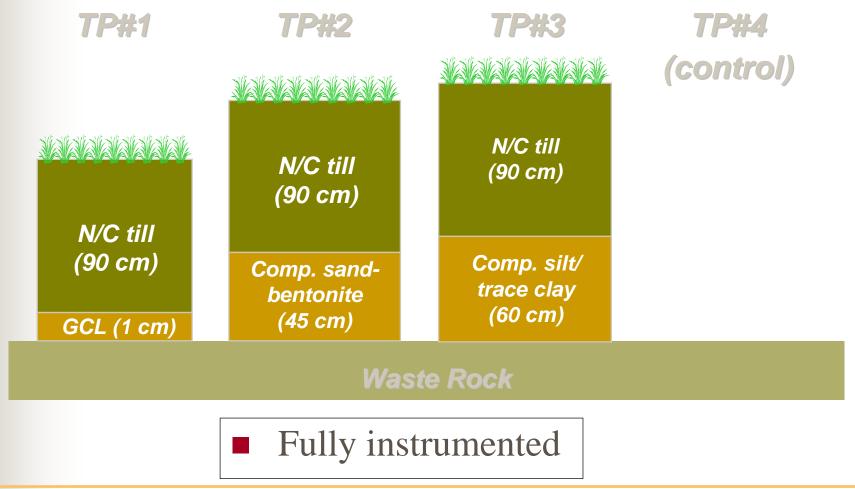
Based on available data we decided to: *Relocate all waste rock to the open pit and cap with an engineered dry cover*

Closure Plan: Specifications and Objectives

- Mitigate environmental issues
 - Primarily associated with WR piles
- Mitigate safety issues
 - Open pit
- Closure plan submitted in 1998

- Engineered cover system will be on 20% slope, covering 9.7 ha
- Objectives of cover system:
 - reduce ingress of atmospheric
 O₂
 - reduce infiltration of meteoric
 H₂O
 - growth medium for vegetation

Whistle Cover Trials 2000 - 2004



- Objectives of Study:
 - Design/construct a WR platform with a seepage collection system
 - Evaluate construction techniques and gain insight into potential QA/QC problems
 - Monitor field performance
 - Generate data for future modelling

Plot Design Details

Cover Trial Conclusions

Performance monitoring conducted by UWO

- Runoff and interflow monitoring system
- Density and permeability testing
- Formal results forthcoming

Intermediate Conclusions...

- Frozen conditions in barrier layer
- Poor vegetation success
- Improved construction techniques

INAP Waste Rock Study 2001

Conclusions

- Coarse grained
- Freely drained
- Oxygen saturated
- Still contained significant ANC and unoxidized sulphides
- Greater than 50% water soluble oxidation products

SENES Model 2003

Cover Scenarios evaluated:

Cover Material	Cover Scenario	Volumetric Water Content	Porosity	Diffusion Coefficient (m ² /s)	Net Percolation (% of precip.)**
30cm sand/silt	1	0.34	0.36	7.47E-09	10
60cm sand/silt	2	0.32	0.36	1.51E-09	1
30cm sand/silt*	3	0.27	0.36	7.37E-08	20
45cm sand/bentonite	4	0.38	0.40	2.60E-09	5

- Without cover placement ARD generation in backfilled waste rock (above flood level) will result in poor pit water quality (low pH, high SO4 and metals)
- All three cover scenarios studied will control future ARD generation resulting in neutral pH and gradual decline of SO4 and metals in pit water
- Control of oxygen ingress is more critical than control of net percolation for cover design

Selection of Barrier Layer Material Preliminary Construction Cost Estimates

1) GCL barrier cover – \$3.3M

- Most economical
- Poor oxygen diffusion barrier

2) Silt/trace clay barrier (60 cm thick) cover – \$3.5M

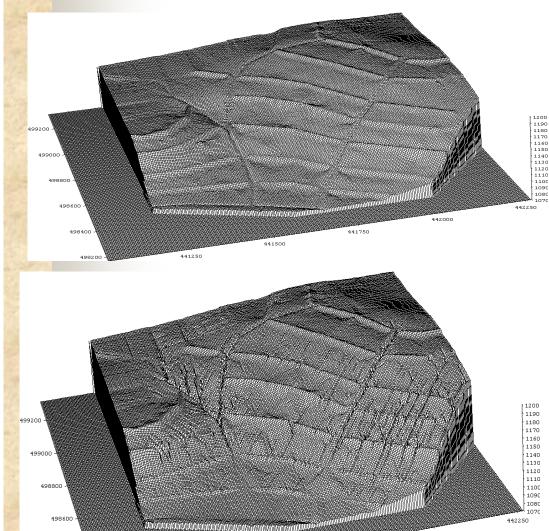
- Borrow source 40 km from site
- Good oxygen diffusion barrier

3) Sand-bentonite barrier (45 cm thick) cover – \$5.3M

- Bentonite borrow source in Wyoming or Montana
- Good oxygen diffusion barrier

Copper Cliff Clay

- Excavated & stockpiled as partof historic earthworks at Inco'sCopper Cliff operations
- Readily available


- Key physical/hydraulic attributes:
 - Inorganic clay of low to medium plasticity
 - 25% clay-size particles
 - Ksat ~ 5 x 10-8 cm/sec

Original Landform Design

442000

441750

441500

441250

498400

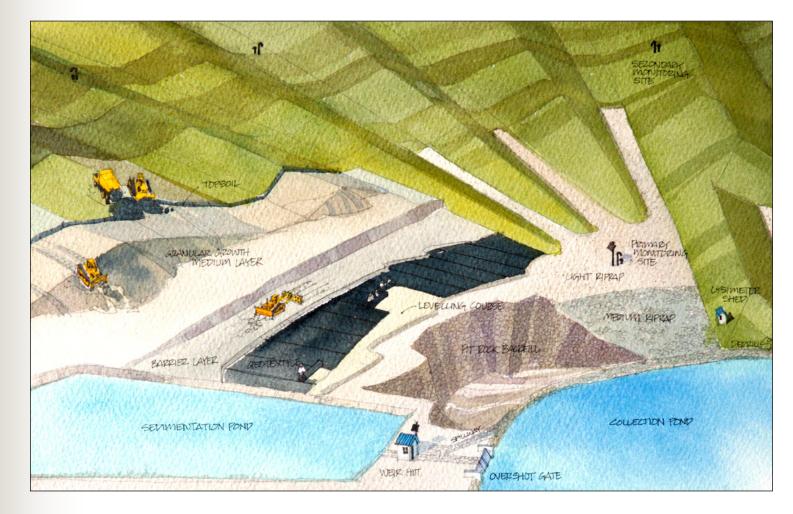
498;

Lateral berms used to direct runoff to drainage channels

100 Years Later...

- Significant gully/rill erosion
- Interrill erosion
 - Design change required

Preferred Final Landform Design



100 Years Later...

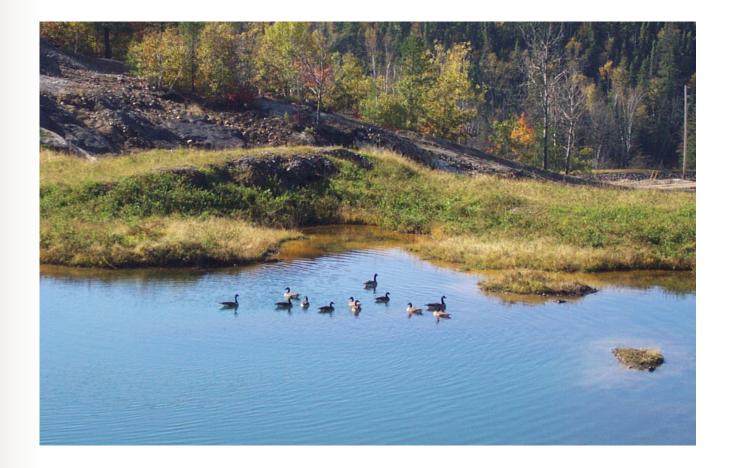
Important Construction Details

Cover Performance Monitoring System

- Primary in situ cover monitoring:
 - Automated
 - Net percolation
 - Suction / water content
 - Temperature
- Secondary in situ cover monitoring (portable moisture probe & O2 / CO2 gas analyzer)
- Groundwater monitoring wells
- Surface runoff (automated weirs)
- Meteorological monitoring

Growth Medium Layer/Revegetation

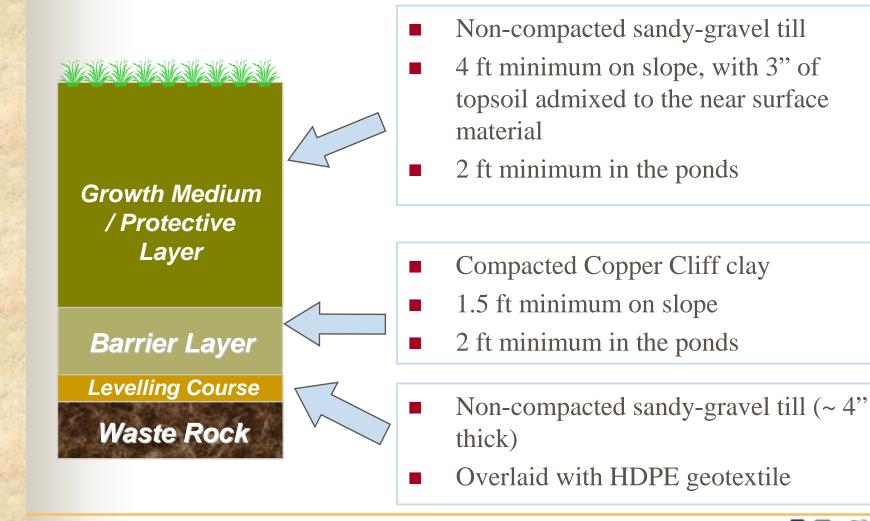
A AND



Where Are We Today?

- Wet summer forced delays
- Upper half of the cover has been completed
- Approx. half of the instrumentation was commissioned:
 - 8 of 13 secondary *in situ* monitoring sites
 - 1 of 2 lysimeters
 - Weather station installed

Thank You



Preferred Pit Cover System Design

Long Term Sustainable Performance

- Erosion control measures
- Revegetation plan
- Growth medium layer
 - Competent material
 - Thickness
- Barrier layer
- Geotextile
- Performance monitoring system

Cost Summary

Construction Details

- Test plot area was lined to direct runoff to a collection pond
- Each plot was instrumented to collect pertinent data

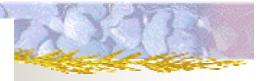
Waste Rock: Sample Results

Sulphur Content

- Range $\Rightarrow 0.03$ to 9.17% S.
- Average $\Rightarrow 2\%$ S.

Acid Neutralizing Capacity:

- Range \Rightarrow 0 and 56 kgH₂SO₄/t.
- Average ANC \Rightarrow 20 kgH₂SO₄/t.



Dominance of cobble to boulder sized particles

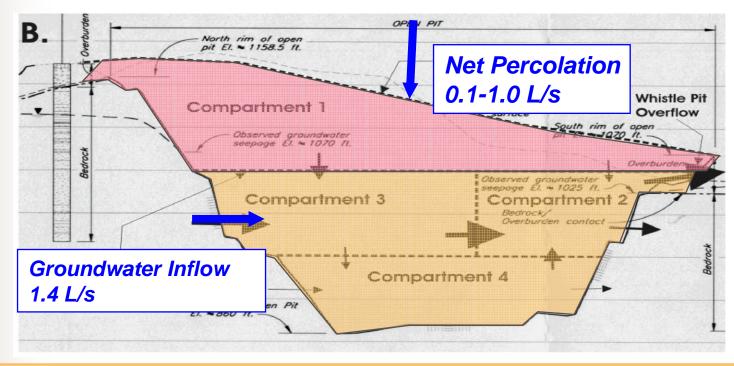
SENES Model 2003 Summary of Results

- Without cover placement ARD generation in backfilled waste rock will result in poor pit water quality
- All three cover scenarios studied will control future ARD generation resulting in neutral pH and gradual decline of SO4 and metals in pit water
- Control of oxygen ingress is more critical than control of net percolation for cover design

Cover Trial Conclusion

- Instrumented with the following equipment:
 - Lysimeters

- O₂/CO₂ gas measurement system
- soil suction and temperature sensors
- volumetric water content sensors
- surface runoff / interflow collection and monitoring system
- meteorological station



SENES Modelling

Objective:

Evaluate benefit of lime addition during waste rock relocation

