A Summary of the INAP Report on

Evaluation of the Long-Term Performance of Dry Cover Systems

Acknowledgements

• INAP

- Anne-Marie Fleury
- Ross Gallinger, PDC
- Bruce Kelley and Steve Slater, RT
- Les Hullet, Inco
- Denis Kemp, Falconbridge
- Reviewers:
 - Nick Currey, PDI
 - Rich Borden, RT
 - Mike Aziz, ESM
 - Pete Waters, BHPBilliton

- Dr. Lee Barbour, Univ. of SK.
- INAP Project Managers:
 - Pete Waters, BHPBilliton
 - Mandy Agnew (Rio Tinto)
- Site Personnel:
 - Mike Aziz, Equity Silver
 - Zoe Ramdin, Kimberley Ops
 - Pete Waters, Mt. Whaleback
 - Clara Qualizza and Gord McKenna, Syncrude Canada Ltd.
 - Stuart Jennings, MSU

Equity Silver Kimberley Operations Mt. Whaleback Syncrude Canada MSU Research Site

Presentation Outline

INAP

- Scope of INAP Project
- Key Processes and Properties Affecting Long-Term Cover System Performance

Scope of Project

Stage Two

- Obtain Field Data from Five Sites
- Conduct Modelling of Two Sites

Change in Scope: In Situ Hydraulic Conductivity Testing

Stage One

- Identify and Define Processes Affecting Long-Term Performance
- Evaluate Models / Desired Additions
- Laboratory Testing
- Performance Monitoring

Long-Term Performance

Example: Two-Dimensional Effects

- Static
- Capillary Barrier
- Steady State
- Engineered Integrity
- Isolation

- Dynamic
- Soil / Ecosystem
- Coupled Transient
- Ecological Stability
- Integration

Improving the Models?

Vegetation

Current Methodology

- Leaf Area Indices (LAI)
- User Defined Root Characteristics
- User Defined Transpiration Limiting Function
- Improve Ability to Link Biological and Physical Aspects of Cover Performance
 - Vegetation Requires Oxygen, Nutrients, and Water
 - Root Development Dependent on In Situ Conditions not User

Defined

11th Annual British Columbia ML/ARD Workshop, December 1st & 2nd, 2004

In Situ Direct Cover Monitoring

- Change in Field Hydraulic Conductivity
- Change in Moisture Retention Characteristics
- Change in Oxygen Diffusion Characteristics
- Long-Term Performance
- Change in Physical Integrity of Cover System

Full-Scale? / Minimum?

Moisture Storage Changes

Site Specific Rainfall & SWE

Watershed Surface Runoff

11th Annual British Columbia ML/ARD Workshop, December 1st & 2nd, 2004

After Construction: Contour Banks Installed

Source: Rob Loch and Greg Hancock

Forty Years: with contour banks

Forty Years: without contour banks: -

Over the long- term the model predicts lower rates of erosion as there are no structures to concentrate flow

Long-term stability can be very different to short-term stability

Source: Rob Loch and Greg Hancock

INAP

High rates of erosion develop once the contour banks fill with sediment

and overtop

11th Annual British Columbia ML/ARD Workshop, December 1st & 2nd, 2004

In Situ Hydraulic Conductivity

Direct Measurement

Syncrude Canada Ltd. (Alberta)

Placer Dome Equity Silver Mine

TeckCominco Kimberley Operations

Montana Reclaimed Coal Spoil

INAP

Kimberley Operations

Effect of Wet / Dry Cycles and Root Development

In Situ Hydraulic Conductivity

- Chemical Process
 - Sodic material
- Physical Process
 - Wet/Dry Cycles
- Biological Process

Grass and Root Development

¹¹th Annual British Columbia ML/ARD Workshop, December 1st & 2nd, 2004

In Situ Hydraulic Conductivity

Plant Available Moisture

2 m thick Growth Medium

0.5 m thick Growth Medium

Artificial Drought Condition??

Thickness of Growth Medium

Bioturbation

Low-level radioactive tailings exposed by biological activity approximately 5 years after cover placement

Source: Mike Fawcett

Key Points

- **Unsaturated** System Where Performance is Intimately **Coupled to Atmosphere**
 - Dynamic not Static
- In Situ Performance Monitoring
 - Paramount for Understanding the Processes Controlling Long-Term Performance
 - In Situ K-tests as a Surrogate for Evaluating Impact of Processes
 - Thickness of Growth Medium?
 - Typically Focus on Compacted Layer
 - As Much Design Required for GM
 - Site Specific Physical, Chemical, Biological Processes?
 - Evolution of Cover Material
 - Climax Vegetation?
 - If Build It.....It Will Come!

