GEOCHEMICAL CHARACTERIZATION OF WASTE ROCK

ANTAMINA MINE

PERU

David Brown, Golder Associates Rens Verburg, Golder Associates Henri Letient, Antamina Celedonio Aranda, Antamina BC/MEND Workshop November 30, 2005

Presentation Overview

- Site Background
- Waste Rock and Ore
 - Issues
 - Investigation
 - Results
- Ongoing Work and Conclusions

ANTAMINA MINE LOCATION

Peruvian Andes (4,200m)
Upper Amazon drainage basin
Copper-zinc-molybdenum mine
Full production in 3rd quarter 200
Daily tonnage:
Ore - ~100,000,
Waste - ~300,000

Mine life of 20 years

FALCONBRIDG

teckcominco

Site Overview

Geochemical Issues

- Potential impacts to water quality from
 - Sulfide oxidation
 - Acid generation
 - Metal leaching
 - Dissolution of stored oxidation products
 - Mineral dissolution
 - Metal leaching (under neutral conditions e.g. Cu, Zn, Mo)

Waste Rock Issues

- Over 1.3 billion tonnes of waste rock, to be distributed in three major dumps
- LG/MG Ore processed year 23 (LOM)
- Operational/post-closure site drainage management

Objectives

- Establish long-term monitoring plan of waste dumps and stockpiles
- Refinement of waste rock classification
- Define operational criteria for waste rock routing
- Optimization of closure requirements and operational/post-closure site drainage management

Gap Analysis

- Significant static geochemical waste rock characterization completed prior to mining
- Samples not always representative of current rock
- Additional information available through pit development
- Develop characterization program to take
 advantage of exposed rock

Waste Rock Classification

- Three classes: A, B, C
 - A: skarn, intrusive
 - A, B, C: hornfels, marble, limestone
 - Sulfide, zinc, arsenic content
- Current system protective of environment, but refinement feasible

Geochemical Characterization Program

- Static tests
 - Metals, ABA, leach tests (DI, H₂O₂): 100s of samples
- Mineralogy
- Kinetic testing (8 cells)
- Field cells (27 cells)
- Waste rock and LG/MG ore stockpile runoff monitoring

Summary of Field Cells

- 27 Field Cells Constructed (2002 - 2005)
 - Hornfels & Marble
 - Class A 4 Cells
 - Class B 7 Cells
 - Class C 3 Cells
 - Class A Skarn & Intrusives
 - Intrusives 3 Cells
 - Endoskarn 2 Cells
 - Exoskarn 2 Cells
 - LG Ore 3 Cells
 - MG Ore 3 Cells

Waste Rock Program Field Cell Construction

- Field cell construction
 - Clean 55-gallon plastic drum
 - Drum placement on terraced and secure area
 - Bottom drainage layer
 (≈ 15 cm silica sand)
 overlain by filter fabric

Field Cell Monitoring

- Leachate sample collection
 - Variable sampling frequency
 - monthly during wet season, more frequent at beginning of wet season, and not in dry season
 - Field parameters & laboratory analysis

Rock Field Cell Results Zn (Hornfels & Marble Cells)

Rock Field Cell Results Zn (LG/MG Ore Cells)

Rock Field Cell Results Zn (Intrusives and Skarn Cells)

Zn Field and Lab Cell Results

Rock Field Cell Results Mo (LG/MG Ore Cells)

Rock Field Cell Results Mo (Intrusives & Skarn Cells)

Mo Field and Lab Cell Results

SO₄Mo Field and Lab Cell Results

Water Quality Simulations

 LG/MG ore and waste rock metal release simulated using existing field cell loading rates (supplemented by evaluation of data from laboratory kinetic testing and shortterm leach testing)

Water Quality Simulations

- Predictive water quality modelling completed to evaluate potential impacts to the receiving environment from:
 - existing waste rock classes (Life of Mine)
 - potential modifications to waste rock classification system and placement strategies
 - Varying Class A skarn and intrusives content
 - Varying Class A hornfels/marble
 - Varying Class B hornfels/marble content

Water Quality Simulations Key Findings

- Continued treatment of East Dump and LG/MG ore stockpile drainage
 - Simulated concentrations similar or higher than current levels
- Tucush Dump drainage quality very sensitive to the amount of Class A skarn and intrusive material placed in the dump
 - increase in proportions of Class A skarn and intrusives has adverse impact on water quality in the Tucush drainage
- Varying the Class B material content in the Tucush Dump minimal impact on water quality

Ongoing Work – Waste Rock Classification

- Development of quality control and characterization procedures for waste rock placement
- Continued refinement of the waste rock classification system
- On-going monitoring of field cells
- Instrumentation of test piles ~6,000 tonnes, ~38m x 38m x 10m high (UBC)

Characterization of Other Materials

Tailings

- Static testing (metals, ABA, short-term leach)
- Mineralogy
- Laboratory and field cell
- Tailings porewater quality collected from piezometers installed in beach
- Tailings impoundment pond and seepage water quality monitoring data
- Lake Sediments
 - Static and laboratory kinetic cells

Conclusions

- Importance of initiating this type of program early on in the mine life
- Field cells more reliable than lab tests (if time permits)
- Need for ongoing testing and monitoring
- Water quality prediction based on field cells data used for waste rock management and long term planning

