Geochemistry of an experimental waste rock pile, Cluff Lake, Saskatchewan

Roger Beckie, Leslie Smith, Karin Wagner

Frederic Guerin

Areva Mining – Cogema Resources Inc.

Outline

- Overview of experiment
 Primary mineralogy
 Aqueous phase
 Secondary mineralogy
- 5. Loading estimates

Field Site Description

- Multi-ring Carswell meteorite impact structure
- Waste rock:
 - –Peter-River aluminous gneiss
 - –Earl River feldspathic gneiss
 - -Small amounts of Athabasca sandstone

Cluff Lake Mine & Waste Rock Pile

Constructed Waste Rock Pile Experiment

Pad and Piping

16 heat-traced outflow pipes Lysimeter dividers PVC and HDPE geomembrane

Top Surface of CPE

Instrumentation Hut & Outflow Sampling

Experimental Program

1997 – Sept. 1998	Construction of pile.
Sept. 1998 – Aug. 1999	Wetting up period.
Aug. 1999 – Aug. 2002	Natural and artificial rainfall, tracers.
Aug. 2002	Covered with compacted waste rock.
June 2004	Pile deconstruction.

Hydrology

- Average Annual Air Temp: ~0°C (-45 to +35)
- Annual Rainfall: 305 mm
- Annual Precipitation: 455 mm

Net infiltration

Full pile: Individual lysimeters:

(% of precipitation) 56% ers: 30% to 121%

Mean water residence time: ~2.8 years

Low-Permeability Cover

- August 2002, waste rock with cobbles removed was added to surface of CPE and compacted to create a lowerpermeability cover (K ~ 10 ⁻⁷ m/s)
- Basal discharge reduced by factor ~2.5

DJX Waste Rock Grain Size Distribution

"soil-like" - matrix flow dominates

Geochemistry

- Mineralogy
 - Thin sections
 - Whole rock analysis
 - X-ray
 - SEM
 - Leco Furnace (total S)
- Water chemistry
 - Anions with IC (n≈2500)
 - Cations with ICP-OES (n=272) and ICP-MS (n=165)
 - Electrical conductivity
 - Standard water for calibrations (Jayne Simser, National Water Research Institute)

Primary Mineralogy

- quartz, k-feldspar, albite, chlorite, muscovite, kaolinite, smectite and amphibole
- Sulfide bearing minerals: pyrite and pyrrhotite
- Sulfide content: 0.45 wt % 0.33 wt %
- Paste pH ~ 3.6
- NP/AP ratio ~0.3

Aqueous Geochemistry

- Major anion: sulfate
- Concentration range: 600 35,000 mg/l
- Maximum: ~ 400,000 mg/l
- High spatial and temporal variability
- General decrease of sulfate concentration in the outflow water during the experiment
- pH 3.2 3.6, low variability

Outflow – Sulfate Concentrations

UBC

Outflow – Major Cations

Results – E.C. vs. Sulfate Concentration

Sulfate correlation

Dilution

Brown coating: goethite and ferryhydrite (FeO(OH), $Fe_2O_3-0.5H_2O$) Yellow coating: jarosite KFe₃(SO₄)₂(OH)₆

Hydrated magnesium & aluminum sulfates MgSO₄-nH₂O & KAI₃(SO₄)₂(OH)₆

Scanning Electron Microscopy

Hydrated aluminum sulfates

Pore water chemistry

Flow Rates and Outflow Chemistry

Dry conditions Flow in fine-grained matrix **Relatively slow** Long time for water-rock interactions Outflow water relatively concentrated

Wet conditions Flow in coarse grained material **Relatively fast** Short time for water-rock interactions **Outflow water relatively** fresh

Event Effects: Freshening of Outflow

Flow - chemistry

UBC

Flow Rates and Outflow Chemistry

Loading at Base of CPE (mg SO₄/kg/week)

Year	Mean	Summer High	Winter Low	Humidity Cells		
2000	5.6	19	~0.1	Fine 0.6 66 mm		
2001	3.8	11	~0.1	Coarse 2 27 mm		
2002	3.5	16	~0.1	Hollings et al (2001)		

Aerobic leach columns

35 – 40 kg, 3 L rinse per week

	Pore Volumes	Percent of initial leached		
		Ni	U	S
Pile Experiment	~1.25 (5.5 years)	11 %	37 %	5 %
Leach Columns	~1.25 (2 weeks)	17 %	50 %	N/A
	~10 (20 weeks)	34 %	79 %	N/A

DJX Waste Rock Grain Size Distribution

Reactive fraction?

Conclusions

- Principal buffer minerals: chlorite and muscovite.
- E.C. good predictor of chemistry.
- Dominant chemistry; relative proportions constant.
- Dilution highly variable in space and time.
- General inverse correlation between outflow chemistry and flow.
- Low permeability cover induced a decrease in flow rates and coincident reduction in outflow concentrations.
- During the 4 year experiment ~ 5 % or 150 kg of sulfur were released.
- U and Ni appear to be dominantly in finer, leachable fraction.

Acknowledgments

Natural Sciences and Engineering Research Council of Canada Conseil de recherches en sciences naturelles et en genie du Canada

Joe Marcoline, John Jambor, Craig Nichol, Justin Stockwell, Pete Hollings

