Combining Field Measurements and Reactive Transport Modelling to Predict ARD

Case Study: Fault Lake Tailings, Falconbridge, ON

K. Ulrich Mayer¹, Connie G. Romano², and David W. Blowes³

¹Dept. of Earth and Ocean Sciences, University of British Columbia, Vancouver, BC

²Golder Associates, Burnaby Office

Golder

³Dept. of Earth Sciences, University of Waterloo, Waterloo, ON

What we would like to accomplish

 Prediction of future mass loadings and maximum concentrations of target contaminants at receptors

Current Methods

- Field measurements
 - Qualitative interpretation
 - Limited quantitative interpretation
- System Complexity
 - Hydrogeology
 - Chemical Reactions
 - Sulfide oxidation and AMD release
 - pH and metal attenuation
 - Coupling between hydrogeology and geochemistry

Reactive Transport Modeling

- Used as:
 - Data interpretation tool
 - What-if scenarios
 - Predictive tool
- In order to develop predictive capabilities: Model needs to be calibrated and constrained by field data
- What are the data needs?
- What can be learned, i.e. what are the strengths and limitations?

Basic Conceptual Model

Governing Equations Reactive Transport Code MIN3P

 Simultaneous solution of transport and biogeochemical reaction processes in 1, 2 and 3 dimensions under variably saturated conditions

$$\frac{\partial}{\partial t} (S_a \phi T_j^a) + \frac{\partial}{\partial t} (S_g \phi T_j^g) + \frac{\partial}{\partial t} T_j^s$$
$$+ \nabla \cdot v T_j^a - \nabla \cdot D_a \nabla T_j^a - \nabla \cdot D_g \nabla T_j^g$$
$$= -(Q_j^{a,a} + Q_j^{a,m}) \quad j = 1, N_c$$

Study Site

- Fault Lake Tailings Area, Falconbridge, Ontario
- 5.7 M tonnes tailings deposited 1964-1978
- Up to 50 wt % sulfide minerals; AMD caused minor contamination downgradient
- Closure plan submitted in 1996 by Golder
- Ministry approval obtained with request for more detailed geochemical modelling
- Determine potential long term impacts to groundwater and downstream receptors
- Our approach: application of MIN3P code

Study Objectives

- Describe geochemical conditions along groundwater flow path using existing data
- Estimate relative mobility of components of interest in groundwater
- Estimate peak concentrations/cumulative mass loading of components at sensitive receptors (i.e., airport well and nearest kettle lake)

Site Description

Groundwater Flow Regime

Conceptual Model

- Oxidation of sulfide minerals
 - Ni-bearing pyrrhotite, chalcopyrite and pentlandite
- Dissolution of pH-buffering minerals
 - Calcite, chlorite, anorthite; biotite
- Precipitation of secondary minerals
 - ferric hydroxides/hydroxysulfates (ferrihydrite, jarosite), predominantly in vadose zone
 - siderite, am Al-hydroxide, gypsum, am silica
 - Covellite (CuS), low or ND of [Cu] in tailings
- Potential re-dissolution of secondary minerals

Modelling Approach

- 1D vertical profiles through center of tailings impoundment
- 2D cross-sectional slices through tailings and aquifer to downstream receptors
- Exposed and covered tailings scenarios
- Simulation time 1000 years
- Input parameters extracted from available hydrogeological/mineralogical/chemical data from former studies by Golder and NTC

... Data Needs ...

- Hydrogeology
 - Hydraulic conductivities, recharge rates
- Gas transport
 - Pore gas saturation
- Geochemistry
 - Mineralogy of tailings and aquifer, reaction rates and surface areas

Input Parameter Determination

- Hydraulic conductivities: field measurements
- Water/gas saturations: calibrated
- Mineral fractions estimated from evaluation of reported elemental analyses and qualitative XRD results of tailings
- Calcite content derived from measured neutralization
 potential of tailings
- Reactive surface areas for silicates derived from median grain size in tailings and assuming grains are perfectly spherical
- Significant data provided, but some assumptions necessary!

1D-Simulations Model Calibration

- What could be learned?
 - Estimate of historical rates of sulfide oxidation and pH-buffer reactions
 - Coupling crosscheck
 - What about Ni?

Data from NTC, 1995

Potential Receptors

- Water supply well
- Surface water body
- Simulate
 2D Cross
 Sections

2D Simulation Domains

Steady State Flow Field Long Section

Mineral Volume Fractions Long Section

Long Section - No Cover - T = 1000 years

Aqueous Concentrations Key Components – Long Section

Steady State Flow Field Short Section

Mineral Volume Fractions Short Section

Short Section - No Cover - T = 1000 years

Aqueous Concentrations Key Components – Short Section

What could be learned?

- Long term release and attenuation likely
- Carbonate depletion possible in short section over 1000 year period
- Complex interactions between hydrogeology and geochemistry
 - Hydraulic exclusion of carbonate buffering minerals
 - Impact on GW first felt below fringe areas of impoundment

Limitations

- Long term evolution of rates?
- Hardpan formation?
- Fe attenuation by siderite?

Short Section: Mass Loading

Depth-Integrated Outflow Concentrations

Case Study Conclusions

- Simulation results suggest formation of tailings plume characterized by sub-neutral pH, elevated Fe, SO₄, (and Ni, although not representative)
- 1D simulations agreed with observed historical data
- 2D reactive transport simulations depict geochemical, spatial and temporal features
 - Time delay of breakthrough due to buffering reactions
 - AMD is preferentially generated in periphery of impoundment, where tailings are thin
 - Hydraulic exclusion of buffer capacity in saturated portion of tailings

Reactive transport modeling and field data What we can accomplish

- Detailed data sets required
- Some gaps can be filled by history matching
- Coupling of 2D/3D hydrogeological processes and geochemical reactions can be assessed
- Major ion chemistry can be fairly well predicted
- Much more difficult for trace elements
- Long-term prediction of release rates and attenuation remains difficult

Questions?