DEFINING SOURCE TERMS FOR BACKFILL COMPONENTS IN THE SELBAIE MINE PIT

Michael Venhuis, Paul McKee and Ron Nicholson EcoMetrix Incorporated

> Bert Huls BHP Billiton

Objective/Scope

- Provide estimates of zinc source terms (or functions) that can be applied to the waste materials in order to estimate loadings to the Selbaie Pit lake water.
- The source term functions used by Lorax in modeling future water quality.

Project Components

- Field Work
 - Sample Collection
 - Data Collection

- Laboratory Testing
 - Shake Flask Tests
 - "Column" Tests

Source Term Modeling

Laboratory Testing

- Evaluated :
 - Contaminated Peat
 - Contaminated Soils
 - Oxidized Waste Rock
- Did not Evaluate:
 - Tailings
 - Treatment Sludges
 - Unoxidized (fresh) Waste Rock

Laboratory Testing

- Previous Investigations (SNC-Lavalin)
 - Tailings and Treatment Sludges:
 - Liquid Phase Zinc Inventory <0.5 mg/L
 - Leaching at pH 7 = Zinc concentration <0.5 mg/L
 - Unoxidized (Fresh) Waste Rock
 - >2 yrs for significant oxidation to occur
 - Fresh WR deposited in pit within 2 yrs
 - No significant increase in aqueous Zinc concentrations during flooding of this waste

Zinc Inventory in Materials

Waste Material	Zinc Concentration Range (mg/kg)	Zinc Concentration Average (mg/kg)
Contaminated Soils (8 Samples)	134 – 3,150	1,413
Oxidized Waste (11 Samples)	243 – 8,250	3,897
Peat (11 Samples)	211 – 8,130	2,327

Note : Oxidized Waste has 2.8x greater Zn concentration relative to Contaminated Soils

Shake Flask Tests

- Estimate initial porewater concentrations available for release to overlying pit lake through diffusion processes over time
 - 3:1 Water:Solids Ratio (125g Solid:375mL water)
 - Constant Agitation for 24 hour

Shake Flask Tests - Results

Waste Material	Estimated Porewater pH	Estimated Zinc Concentration (mg/L)
Contaminated Soils	4.1	1658
Oxidized Waste	6.2	19
Peat from Low Grade Ore Stockpile	5.1	317
Peat from West Sector	5.6	6.0

"Column" Tests

- Determine the rate of metal flux to overlying water column under different pH conditions
- Allows for assessment of physics (diffusion) and geochemistry (e.g., precipitation reactions).
- Evaluated (in duplicate):
 - pH 7
 - pH 9
 - Unadjusted pH (generally ranged between pH 6-7)

Test Cell Set-up

bhpbilliton

Column Test Results-Overlying Water

Column Test Results-Porewater

EcoMetrix INCORPORATED

Dependence of Zinc Sorption on pH for Peat

Source: Gustafsson et al., 2003. Modeling Metal Binding to Soils; The Role of Natural Organic Matter. Environmental Science and Technology, 37, pp.2767.

Partition Coefficient (Kd) for Zn in Peat vs pH

Contaminated Soils pH 9

Oxidized Waste pH 9

Hydrous Ferric Oxides

 $Fe-OH + Me^{2+} = Fe-O-Me^{2+} + H^+$

Source Modeling

- Predict unit areal flux over time
- Solved numerically using Finite Difference Technique

$$F = -D_z \frac{dC_{pw}}{dz}$$

$$f = 1 - \frac{C_{pw} \cdot \eta}{C_T}$$

$$K_d = \frac{f}{1-f} \cdot \frac{\eta}{\rho_b}$$

$$\frac{dC_{pw}}{dt} = \frac{d}{dz} \left(D_z \, \frac{dC_{pw}}{dz} \right)$$

 C_{pw} = concentration of zinc in the porewater (mg/L);

- C_{τ} = total concentration of zinc (mg/kg);
- F = mass flux (source loading) (g/m²/day);
- *dt* = time differential (s);
- dz = depth differential (m);
- η = porosity;
- ρ_b = dry bulk density of material (kg/L);
- = adsorbed fraction;
- K_d = distribution coefficient (L/kg);

Dz = vertical diffusion coefficient (m²/s)

Calibration Results – Oxidized Waste

Calibration Results – Oxidized Waste

Expected and Upper Bound

 Model Prediction using Expected (50th Percentile) and Upper Bound (90th Percentile)

Waste Material	Expected Zinc Concentration (mg/kg) (50 th Percentile)	Upper Bound Zinc Concentration (mg/kg) (90 th Percentile)
Contaminated Soils	1,315	8,223
Oxidized Waste	1,555	2,485
Peat	1,080	6,610

Flux of Zn-Expected

Flux of Zn-Upper Bound

Key Conclusions

- Flux of Zinc to overlying water greatest at lower pH values
- At pH 7, flux of zinc from oxidized waste and peat is reduced relative to acidic pH – not noticed for Contaminated soils
 - For Oxidized waste result of Fe-oxide co-precipitation
 - For Peat result of relationship between zinc sorption and pH

Key Conclusions

Zinc flux estimates after 10 years:
Contaminated soils: 0.06 to 0.10 g/m²/d
Oxidized waste: 0.04 to 0.20 g/m²/d
Peat: 0.002 to 0.01 g/m²/d

 If pH levels maintained around pH 9, zinc flux rates can be reduced – possibly 2 orders of magnitude relative to neutral pH

QUESTIONS???

EXTRA SLIDES

Field Investigations

- Waste Inventory and Configurations
 - What is currently in the Pit now
 - What will be in the Pit at the end
- Collected several composite samples, representing various materials including:
 - contaminated soils (industrial site and base of low-grade ore stockpile)
 - west sector/microwave peat+soil
 - oxidized waste rock

Column Test Results

- Mass balance indicates that Zn is lost from the porewaters/overlying waters in the test chambers.
- Physical diffusion dominates Zn transport to waste surface (Contaminated Soils and Oxidized Waste).
- Chemical precipitation is indicated as dissolved metals diffuse into overlying water (Oxidized Waste).

Calibration Results - Peat

Zinc Concentration in Porewater

Calibration Results – Peat

Zinc Concentration in Overlying Water (mg/L)

Calibration Results – Contaminated Soils

Zinc Concentration in Porewater

Calibration Results – Contaminated Soils

Zinc Concentration in Overlying Water (mg/L)

