

Modeling of Mines Selbaie Pit Lake

Calibration and Long-term Forecasting

Don Dunbar David Flather Silvano Salvador

- Characteristics of Existing Pit Lake
 Circulation and importance of WTP discharge
- Model Calibration and Verification Using Data from 2004 and 2005 Period

- Results of Long-term modeling
- Sensitivity Results
- Prevention/Mitigation Recommendation

Selbaie Pit Lake Water and Zinc Balance Model Calibration

Circulation in Selbaie pit lake
Water balance derivation
Zinc mass loading
DYRESM model for Selbaie

Circulation in Selbaie pit lake

Impact of WTP discharge on the distribution of water properties

Examples

- •Equity Silver Mine, Houston, BC
- •Wabush Lake, Labrador City, Nfld

AL

Water Balance Derivation 2004 to 2005

Objective: Calculate values for each Component subject to constraints

Components

- Direct Precipitation
 - Rain
 - Snow
- Evaporation
 - Surface inflows
 - Tailings Area
 - Waste Dump
 - Industrial Area
 - South Pond
 - WTP

٠

- Groundwater inflows
 - Tailings Area
 - Waste Dump
 - Other
- Peat/waste rock (Zn)

Water balance - Fill curve May 3, 2004 - July 29,2005

- Fill curve constrains the total net inflow between data points
- Ice-on Ice-off period corresponds to reduced inflow groundwater only

Groundwater inflow can be deduced from volume change under ice less precipitation (P=203 mm over 119 days):

$$Q_g = \frac{\Delta V_L - V_P}{\Delta t}$$
$$= 2300 \text{ m}^3/\text{day}$$
$$(V_P \approx 711 \text{ m}^3/\text{day})$$

50

- Flow constraints
- Fill curve
 - Sets absolute limit on mean inflows.
 - WTP
 - Max. design capacity of 800 m³/hr
 - Total from Apr Jul 2005 known from lime **consu**mption
 - Known shutdown periods

Zn mass loading - Total

	2004				2005				
	May 25	July 7	Aug 18	Sep 22	Nov 29	Mar 27	May 4	June 5	July 5
Day	22	65	107	142	210	328	366	398	428
Bottom (m)	84.1	85.5	87.0	88.1	89.5	90.4	92.3	93.6	94.4
Total Zn (T)	31.37	96.80	106.05	144.71	164.25	164.26	181.10	187.32	198.7
Zn load (kg/d)		1521	220	1104	287	0	443	194	381

Depth (m)	[Zn] (mg/L)									
0	2.37	2.62	2.90	5.12	7.70	7.57	9.75	9.55	7.03	
1								9.55	7.03	
5	1.88	4.17	2.90	5.12			9.55	8.58	8.58	
10		4.39	6.80	8.34	8.13	7.99	8.80			
15								8.42	8.59	
20	1.48	7.71	6.00	7.38						
30							8.15			
35								8.60	9.23	
50	1.73	4.74	5.59	7.84						
61							7.70			
70									9.30	
75	2.09	3.76	5.80	7.56				8.31		
Bottom	2.09	3.76	5.80	7.56	8.13	7.99	8.90	8.50	9.73	

[Zn] data used to calculate the total Zn inventory in the lake

DYRESM model for Selbaie

- •One-dimensional, horizontally integrated
- •Pit morphology
- •Heat budget
- •Wind mixing
- •Surface and groundwater inflows and outflows, precipitation & evaporation
- •Negatively buoyant plume and entrainment
- •Conservative tracer (e.g., [Zn]) (No diss. Fe; fully oxygenated)

DYRESM

Initial

Conditions

May, 2004

Summary of Calibration

- Circulation and vertical distribution of water properties are dominated by WTP discharge.
- A consistent water balance has been derived from surface elevation measurements.
- Zn loading during May, 2004 July, 2005 period was dominated by the peat / waste dump source.
- DYRESM model output over the analysis period confirms the critical role of the WTP discharge and is consistent with measurements of [Zn].

Long-term Modeling of Selbaie Pit Water Quality

Utilize calibrated pit lake model as a predictive tool

- Long-term (25 yrs) modeling of pit lake to predict Zn evolution and distribution and determine if surface overflow is discharge compliant
- Assumed Zn to behave conservatively (i.e., no allowance for geochemical/biological removal)
- Sensitivity Analysis of Key parameters

Prescribed Conditions

- Assumes filled pit lake that has been treated to achieve 0.25 mg/L [Zn] throughout water column
- Expected Case Hydrological Conditions

 Surface runoff from Industrial Area and tailings area are clean and diverted away from pit lake to environment
- Zn flux from submerged peat/oxidized waste as per Ecometrix "expected condition"
- Seasonal Water treatment plant discharge with Zn concentration of 0.06 mg/L

Expected Condition Zn Flux

Expected-Base Case – Zn

Sensitivity Analyses

Assumed Upper Bound Zn flux (~ 3 x greater Zn flux)

Submerged Peat/waste rock

Industrial Area (till) GW

Industrial Area (bedrock) GW

Summary of Key Findings

- Expected Hydrological and expected Zn flux from submerged peat/waste rock results in ~ 0.1 mg/L incremental increase in [Zn] in pit lake
- Compliance is maintained provided initial lake [Zn] assumptions are valid (*i.e.* ≤ 0.25 mg/L)
- Higher-than-expected Zn fluxes from submerged material could result in non-compliant water quality

 focus management on reducing potential flux from submerged waste

Prevention-Mitigation

- Place a diffusion barrier over the submerged peat/oxidized waste rock
- Use WTP sludge as diffusion barrier material

Prevention-Mitigation

- Discharge from a floating and movable pipeline
- WTP sludges are alkaline, fine-grained and have the best chance of covering the irregular surface of the submerged waste

