Les Mines Selbaie Zinc Removal from Pit Lake

> Laboratory Limnocorrals Batch Pit Treatment Bernie Aubé

Selbaie Problem (2005)

- 22 Mm³ of water contained in a pit lake (closed in 2004)
- Due to deposition of contaminated wastes in the pit, 10 mg/L Zn were contained in the pit lake water
- Eventual plan is to overflow clean water from the lake when full (38 Mm³)
- Must meet 0.5 mg/L Zn and non-toxic

- Designed to simulate scenarios:
 - Simple lime addition
 - Ferric sulphate addition
 - Mixing with other sources prior to liming
 - Red Mud addition (aluminium refinery waste)
- Only lime addition discussed in detail as it was the chosen method

Lime Addition Tests

Lime Addition Tests

Straight Lime Addition

Results from Bench Tests

Straight Lime Addition

Lime Consumption Results from Bench Tests

Straight Lime Addition

• pH 10.0

- Total Zn about 0.17 mg/L, lime consumption
 0.06 mg/L (use 0.08 g/L to be conservative)
- Chosen as Benchmark test for straight lime addition

Limnocorrals

- 1. pH 10.7 at surface
- 2. Recirc. suction at 7.5 m depth
- 3. Recirc. injection at 9 m depth
- 4. Control
- 5. pH 9.5 at surface Red Mud addition
- 6. pH 9.5 at surface biological test

Limnocorrals

Recirculation Test

Initial Treatment Results Limno 1

Limnocorral Results

- Treatment to pH 10 or more works as evidenced by 2 limnocorrals
- Treatment to pH 9.5 is insufficient
- Thermocline presents a barrier to treatment
- Injection at depth does not work in a limnocorral with an open bottom – this is not a treatment conclusion, it is a test design flaw

Limnocorral Conclusions

- You cannot treat and release only one layer of the pit as the thermocline presents a barrier to mixing
- Setpoint pH of 10 confirmed

Pit Treatment

- Started September 14th, ended November 5th 2005
- 2000 tonnes of quicklime injected
- pH increased to near 10 (likely higher post treatment profiling completed late)
- Zn concentrations taken from ~10 mg/L to less than 0.2 mg/L

Pit Treatment Cross-section

Pit Treatment Plan View

Portable Slaker & Storage Tank

Pump barge & HDPE Pipes

Steel Pipes Installation

Diffuser Raft Location

Pit Profile Locations

⊗ – Sampling locations

Main Pit Profiles 2005

Pit Profiles

- Last profile 10 days before end of treatment
- Last measured temperature without significant gradient (7.25 to 7.19 deg. C)

Pit Zn Profiles 2005

Limno Zn Profiles

 Zn Concentrations below
 0.2 mg/L target at all depths before end of treatment

Pit pH Profiles After Treatment

Post-Treatment

- Pit lake pH slowly decreasing despite significant added alkalinity
- Variability at surface due to liming runoff
- Thermal stratification in summer, mixing in fall

Average pH after Treatment 2005-2006

EnvirAubé

Post-Treatment

- Average pH decreasing steadily
- Greater decrease between July and October could be due to 3-week plant
 - shutdown
- Equilibrium pH expected to be 7.5

Pit Zn Profiles after Treatment 2006

Pit Zn Profiles

- Even though pH is decreasing, Zn load still low
- Over-liming runoff helping to maintain low Zn at surface

Average Zn Concentrations after Treatment

Pit Zn Concentrations

- Recent results show increasing trend
- New surface liming system may compensate particularly in spring 2007

Pit Treatment

- pH increased in line with predictions
- Zn and Cd treatment met predictions
- 2000 t CaO was a good target
- Lake water passed toxicity testing
- Pit Treatment System a Success!!
- Maintaining high pH and low Zn concentrations remaining challenge

