Progress and future plans for pit - Selbaie

Denis Caron and Bert J. Huls

13th annual BC/MEND ML/ARD 2006 workshop Vancouver, November 29 and 30th, 2006

Selbaie Pit Lake evolution

July 10 2002, elev 157

July 29 2004, elev 232

November 14th 2006

elev 249

Pit lake – Progress and current status

- Water volume of 26.5 Mm3 is currently stored in the pit (70% of capacity)
- Pit water meets MMER, provincial discharge criteria and lethality tests
- Since batch treatment completed in 2005, the pH is at 8.5 8.7 and the Zn level increased by an average of 0.12 mg/L
- The top of the stored materials (peat, oxidized waste rock and topsoil) remains exposed but should be submerged by summer 2007
- Surface run-off from the industrial site (zinc <10 mg/L) is treated by a new lime addition point and diverted into the pit
- Lime Plant treated water pH has been increased to 10 10.5 and flows to the pit by gravity

MMER - Metal Mining Effluent Regulation

Pit Lake – Progress and current status

Diversion of the industrial site run-off directly into the pit

New lime addition point

Site water management – Current situation 2006

Site water management - expected conditions in 2009

Pit lake : Potential issues in the future

- Pit wall stability
 - Slopes subject to erosion particularly with the rising water level into the overburden material
- Total Suspended Solids into the future pit lake discharge
 - With the accumulation of sludge into the pit and the slope erosion, the TSS could eventually increase and exceed the discharge criteria
- Pit water Quality
 - Gradual increase in zinc caused by dissolved zinc inputs from submerged mine waste, surface run-off or groundwater sources. (Added lime addition point to treat industrial site run-off in 2006.)

Pit wall stability

- Bedrock slopes
 - According to 2D stability analyses, the bedrock slopes (varying from 50m to 200m high) are not expected to be subject to deep-seated instability
 - The factor of safety should progressively increase with the filling of the pit with water and sludge to reach a value between 3.0 to 4.0
 - Potential for some minor bench instability and / or rockfalls
- Overburden slopes
 - The overburden slopes largely comprised of mixed-grained glacial till and prone to erosion particularly as the water level rises to full capacity
 - Monitoring and regular visual inspection will identify areas that may need further stabilization

Pit wall stability – overburden erosion protection Geotextile and rip rap to control erosion

Pit Lake – Future Plans Contingencies to control zinc in the pit discharge layer

- Pit water control level to operate in batch mode
- Liming surface layer
- Fertilization (polishing application)
- Recirculation of pit water into the lime plant to raise whole lake pH

Pit Lake Potential Mitigation measures to control pit water quality

Acknowledgements

For their great contribution and the team work achieved to get a better understanding of the behaviour of the Selbaie pit lake, some particular thanks for:

- Bert J. Huls, (Ph.D.), BHP Billiton
- Les MacPhie, P.Eng., M. Eng., SNC Lavalin Inc.
- Daniel Damov, Eng., M. A. Sc., and others SNC Lavalin Inc.
- David H. Flather, Lorax
- J. Jay McNee (Ph.D.), and others, Lorax
- Paul Mckee (M.Sc.), Ecometrix
- Ronald V. Nicholson (Ph.D.), Ecometrix
- Michael Venhuis, M.Sc., P. Geo, and others Ecometrix
- Bernard Aubé (P. Eng, M.A.Sc.), Enviraubé
- Alan F. Stewart (P. Eng, P. Geo), Piteau Ass.

Questions ?

