

Long-Term Performance of Passive AMD Treatment Systems

Paul F. Ziemkiewicz West Virginia University

Metal Hydroxide Precipitation in OLC

Aluminum Hydroxide

Ferric Hydroxide

Types of Passive Systems Evaluated

- Aerobic Wetlands
- AMD Treatment
 Ponds
- Anaerobic Wetlands
- ALDs
- ALD/ Wetland combos

- Vertical Flow Wetlands
- OLCs
- Limestone leach Beds
- Steel Slag Leach Beds

Project Coverage

- Evaluated 49 passive AMD treatment sites throughout the eastern US

 Al, IN, KY, MD, OH, TN, and WV
- Total of 137 treatment units

System Design Parameters

- Amounts of materials used
 - Limestone
 - Steel Slag
 - Ca(OH)2
 - Soda Ash Briquettes
 - Compost
- System dimensions (to calculate volume of material excavated)

Acid Load Reductions

- Mass of base needed to neutralize

 Flow (gpm) x acidity (mg/L) x 0.0022 = acid load (tons/year)
 - Influent acid load Effluent acid load = acid load reduction (tons/year)

Estimated Service Life

• Service life is the expected period of performance for a given treatment unit

 SL (yrs) = (Tons of Alk. Material) x (% NP) Acid load removal rate (tpy)

• Assigned a maximum value of 20 years

Cost to Treat a Ton of Acid

 System Efficiency = \$/ton acid load removed

 Efficiency over the Service Life = \$/ton acid load removed/yr

Cost of Active Treatment

- Estimated annual cost of treating 1 ton of acid with caustic soda (NaOH)
- Estimated to be \$500/ton of acid/year
- Cost does not include equipment, labor, sludge pond construction, cleaning, piping or other maintenance costs

Determination of Treatment Success

Wate

• Successful treatment units must meet the following criteria

- Must have a net positive acid load reduction
- Lower cost of treatment than caustic

Confounding Factors in Performance Evaluations

- Poor fit between system type and water quality
 Example: using a ALD to treat high Al water
- Undocumented inflow of acid or alkaline water into the system
- Pre-construction estimates of influent quality and quantity may not reflect current conditions

Anaerobic Wetland

K.K.

Mater Mesearch Institute

Anoxic Limestone Drain

- No D.O.

Anoxic Limestone Drain, under construction

🞸 WestVirginiaUniversity.

Vertical Flow Wetland: Construction

Vertical Flow Wetland

Open Limestone Channel

Open Limestone Channel

Limestone Leach Bed

Steel Slag Leach Bed

	Comparison of Passive Treatment Performance						
E Water Research							
Table 11.	Summary of the						
	and cost (successful vs failure) of 137 passive treatment systems.						
			Average	Percent	Percent		
System	Number	Average	Acid Treated	With Positive	Successful		
Туре	of Units	Total Cost	(tons/yr)	Treatment	Treatment		
SLB	2	\$54,604	166.3	100%	100%		
LSB	18	\$68,997	17.1	100%	78%		
ALD	38	\$29,327	16.8	87%	76%		
ALD/W	4	\$30,468	8.3	100%	75%		
OLC	11	\$28,098	8.7	91%	73%		
VFW	19	\$51,035	4.1	84%	47%		
AeW	9	\$8,878	3.6	78%	44%		
AnW	18	\$92,227	-2.7	56%	28%		
Ponds	18	\$7,317	-0.3	39%	22%		
Total:	137						

AMD Treatment Cost vs. Change in pH

116 Square Miles (74,240 Acres) Provides 10% of Flow to the Hocking River ◆ Heavily Mined for Coal Over Last 180 Years (4,000 Surface Acres and 15,000 Underground Acres) Most Mines Abandoned Before Mining Laws in Affect

Site:	Grimmet		$\overline{\mathcal{A}}$				
Sample:	Tributa	ry Mouth					
	рН	net acidity	a	cid load	[Fe]	[A]	[Mn]
		(mg/L)		(tpy)	(mg/L)	(mg/L)	(mg/L)
pre construction	3.1	132.0		25.5	5.3	11.9	5.4
post construction	6.9	-22.7	-/-	-8.4	0.4	0.5	0.5
acid treated:				33.9	tons per year		
project cost:			\$	75,000			
efficiency:			\$	111	per ton of acid treated		

3	MULGA RUN RECLAMATION PROJECT	Project Number 86.32131.00	CL.	
2	WATERSHED MAP	32131_34		2354
52	ODNR - DMRM	10/04	AS SHOWN	App'ir libr
H12004/14	JACKSON COUNTY, OHIO (FIGURE OBTAINED FROM LITTLE RACCOON CREEK AMDAT PLAN)		ATC	Figure: 1

Slag Leach Bed

Slag leach bed: construction

₩westVirginiaUniversity。

Aerobic wetland with check dam

🞸 West Virginia University.

Site:	Mulga Run					7	
Sample:	Tributary Mouth						
	рН	net acidity	a	cid load	[Fe]	[AI]	[Mn]
		(mg/L)		(tpy)	(mg/L)	(mg/L)	(mg/L)
pre construction	5.7	30.7		42.2	10.4	5.3	5.0
post construction	7.2	-75.6		-172.4	1.6	<0.25	2.9
acid treated:				215	tons per	ons per year	
project cost:			\$	600,000			
efficiency:			\$	140	per ton of acid treated		ated

West Virginia University.

Big 4 Hollow: Limestone channel and leachbed

Site:	Big 4 Hollow						
Sample:	Tributary Mouth						
	рН	net acidity	a	cid load	[Fe]	[AI]	[Mn]
		(mg/L)		(tpy)	(mg/L)	(mg/L)	(mg/L)
pre construction	3.5	150.5		82.2	3.9	16.0	4.4
post construction	5.7	48.8		26.5	0.9	7.5	3.5
acid treated:				56	tons per year		
project cost:			\$	300,000			
efficiency:			\$	269	per ton of acid treated		

Result of Limestone Leach beds pH was 4.2; now 7.1

Limestone Leachbed Site Prior to Reclamation

Acmar Internal Leachbed

Substanting Street and Street and Street

Improved Discharge (mg/L)

	Before	After
pН	3.8	7.3
Acidity	91.7	0
Alkalinity	0	50.3
Fe	8.4	0
A1	8.1	0

Steel Slag cap on Refuse Pile

Soil

KE

Water Mater Research Institute

Steel slag

Refuse

WestVirginiaUniversity。

Pit Floor and Highwall Barrier – FBC Ash

Bater Research

Boxholm

Maryland In-Stream Lime Dosers

Aquafix

N. Branch Potomac River: pH <u>Before</u> Doser Project

Post Doser Map

Objective: Return of Aquatic Life

AMD Treatment Cost vs. Change in pH

Passive Treatment of AMD with Open Limestone Channels in the

Lower Rock Creek Watershed

McCreary County, Kentucky

AMD Sources

Selected AMD Treatment Methods

- Limestone Sand Dosing
- Refuse Removal and Treatment
- Open Limestone Channels

Rock Creek Project AMD Abatement Methodology

- Treat AMD with limestone sand at rates based on acid loading calculations
- Utilize passive treatment and mine reclamation techniques as funding allows
- Reduce limestone sand dosing as sites are reclaimed and passive treatment systems are installed

KE

pH: Coop North

Hq

pH: Roberts Hollow

Ηd

Acidity: Unnamed Tributary

Acidity: Cooperative North

[Al]: Unnamed Tributary

[A1]: Cooperative North

mg/l

[Fe]: Jones Branch

Acidity: Rock Creek Mouth

Acidity: White Oak Creek Mouth

6,500 m of limestone channel 80,000 tons of limestone

Fish Populations are Increasing in Numbers and Diversity

Acid Loading into Big South Fork reduced from 1,400 tons annually to zero

Watershed-based versus At-sourcebased AMD Treatment: Costs and Benefits Or: Remind Me Why We're Spending All This Money Or:

Is AMD Treatment a Financial Problem Looking for a Technical Solution?

Methods

• A comparison of AMD treatment costs was made related to the following scenarios:

WestVirginiaUniversity.

- Single AMD sources
- Multiple AMD sources
- Manganese sources.

Cost Factors

- Site access
 Construction
 Alkalinity addition
 A
 Oxidation
 Sludge disposal

Parameters

• AMD Cost = S + C + A + O + D

 Environmental efficiency = AMD Cost/ Recovered stream miles

 Treatment efficiency= AMD Cost/Tons of acid load removed

M&O: Charging the Lime Bin

M&O: Sludge Cleanout

At-source vs. In-stream costs

Research		20-yr	Stream	Stream Recovery	Acid Load Removal
	acid load	Trt.	Rec.	Cost	Efficiency
Treatment Scenario	(tpy)	(\$)	(mi.)	(\$/mi/yr)	(\$/ton)
A. single AMD, in stream	253	885,171	2.0	22,129	175
A. single AMD, at source	12	532,569	0.3	106,514	2,211
B. multiple AMD, in stream	330	1,926,345	2.5	38,527	291
B. multiple AMD, at source	58	2,858,650	0.5	285,865	2,468
				West W	IrginiaUniversity

Conclusions: In-stream AMD Treatment vs. At-source treatment

- Always treated more acid load
- Recovers more stream miles
- More expensive than at-source, single AMD
- Less expensive than multiple at-source treatment

With In-Stream Treatment We Need to Know:

- How many miles of stream are actually restored to biological health with in-stream treatment?
- How quickly metal floc comes out of the water column
- Effects of metal loading, stream hydraulics: oxidation and floc settlement

Conventional Wisdom

- Treat Till You Drop
 - When the money runs out turn all residual liabilities over to the taxpayer
- Punitive: only negative incentives
- Inefficient: high cost, low return
- Does not address legacy sites

There might be a watershedbased alternative

- Adopt-a-watershed: the one you're about to buy
- AMD bond based on perpetual watershed treatment
 - Predictable results, proven technology
 - Reasonable cost
- Pay into interest-bearing escrow account during mining
- Fund and treatment administered by Province
- If at end of operations site discharge results in no impact to the watershed you get your bond back

AMD Liabilities Can Change Dramatically, yet unpredictably

