Jacques Whitford

Consulting Engineers Environmental Scientists Risk Management Consultants

ADVANCES IN THE USE OF CONSTRUCTED WETLANDS TO TREAT MINE DRAINAGE

THERE ARE VARIOUS KINDS OF CONSTRUCTED WEILANDS

Pond & FWS CW Cells at Alfred, Ontario

· POND WETLANDS • FREE WATER SURFACE WETLANDS SUB-SURFACE FLOW WETLANDS - Horizontal SSF - Vertical SSF CONSTRUCTED & ENGINEERED
 TREATMENT WETLANDS - Passive & Semi-Passive

METHODS TO CREATE AN ENGINEERED SSF WETLAND

Provide Aeration Under The Substrate

- Use Engineered Substrates That Have Chemical Affinities To Some Pollutants
 – E.g., Steel slag for PO₄, green sand for Zn
- Add Things To The Process

 E.g., Heat, dilution, alkalinity
- Use Phytoremediating Plants
- Manipulate Process Conditions
 - E.g., recycle, tidal flow, separate competing reactions

Express Other Processes As EW Cells

 E.g., ABRs, limestone drains, SAPS

ENGINEERED WETLAND CELL OPTIONS

AERATED VSSF EWs

CELL AERATION IN ENGINEERED WETLANDS

 Air Can Be Added To Some Of The Cells Of Engineered Wetlands
 Not fully passive but air is/can be made available for many applications
 Aerators, diffusers

- Supplement Natural Aeration By Plants & Surface Re-Aeration
- Aerate Under Gravel Beds In SSF Wetland Cells

FORCED BED AERATIONTM

THE IMPACT OF SUBSTRATE AERATION ON AMMONIA CONCENTRATIONS FOR AN EW

Jones County Landfill Engineered Wetland

Influent

Effluent

THE IMPACT OF USING AN AERATED VSSF EW SYSTEM (ALEXANDRIA WWTP UPGRADE)

THE ADVANTAGES OF AERATED VSSF EWs

• Vastly Superior Performance - Summer & winter Very Much Smaller "Footprints" Ability To Treat Wastewater At **Much Higher Flow Rates** Semi-Passive Treatment - Possible eventual evolution to passive treatment

ANAEROBIC BIOREACTORS

ANAEROBIC BIOREACTORS (ABRs)

- Developing New Biotechnology

 Sometimes called sulphate-reducing bacteria bioreactors (SRBRs)
- Remove Dissolved Contaminants From ARD & NMD
 - E.g., Zn, Cu, As, Ni, Cd
- Precipitate Metals In Organic Substrate
- Biological Reactions

 SRB & Other microbial communities
- Other Processes Involved
 - Adsorption & absorption
 - Hydroxides precipitation
 - Suspended solids filtration

SOME US MINES WITH SEMI-PASSIVE ABRs

- Lilly Orphan Boy
- Surething
- West Fork
- Judy 14
- Fran Mine
- Golinsky Mine
- Fabius Coal Mine
- Wheal Jane Mine
- Haile Mine
- Golden Giant
- Elizabeth Copper Mine
- Peerless Jenny King Mine
- Lutrell Repository
- Teck Cominco Smelter
- Burleigh Tunnel
- MSF Waste Rock
- Forest Queen

ANAEROBIC BIOREACTORS CAN BE EXPRESSED AS VSSF EW CELLS

- Upflow or Downflow VSSF Design
- Organic Substrates
- Removal Of Some Cationic Dissolved Metals (e.g., Zn) By Sulphide Precipitation
- Removal Of Some Anionic Dissolved Metals (e.g., As) By Biosorption/Sulphide Precipitation

Wastewater Contaminated With Dissolved Metal & Metalloid Cations, And Anions-

INCORPORATING pH CONTROL INTO EWs

LIMESTONE DRAINS CAN BE USED AS ENGINEERED WETLAND CELLS

- Upflow Or Downflow VSSF EW Cell Designs, Un-Planted
- Inorganic Substrates
- Anoxic, Oxic Or SAPS Types
- Open, Buried Or Layer Of Standing Water Above Surface
- Removal Of Some Metals (e.g., Fe) By Physical & Chemical Processes

ANOXIC DRAIN AS AN ENGINEERED WETLAND CELL

CASE STUDIES

ROSEBEL GOLD MINE AERATED VSSF EW SYSTEM

ROSEBEL GOLD MINE IN SURINAME, SOUTH AMERICA

Tailings Dam

Mill & Fresh Water Storage Pond

Receiving Waters

EXCESS RECLAIM WATER MUST BE TREATED BEFORE DISPOSAL ROSEBEL SURINAME

OBJECTIVES OF THE RGM TREATABILITY TEST AT ALFRED COLLEGE

- Demonstrate Reclaim Water Can Be Treated In An EW System
- Demonstrate That VSSF EW Morphology Gave Results As Good As HSSF EWs
- Determine EW Kinetics & Scale Up Parameters
 - Simulated & Actual Reclaim Water
 - NH₃ & CN were main CoCs
- Define Operating Philosophy & Design For Later On-Site Pilot Unit

RGM RECLAIM WATER CHEMISTRY

	Range Actual RW	Synthetic _{RW}	Tote Actual RW
рH	7 - 9	7.5	8
NH ₃ -N	5 -15	17	5.7
TSS	4 - 100	25	13
CN	0.05 - 0.5	5 0.3	0.15

TREATABILITY TEST RESULTS – AMMONIA NITROGEN REMOVAL

- Run Feed Air NH₃-N Removal
 - Influent mg/L Effluent Removal mg/L %
 - B S Off 12.96 3.90 69.9
 - C A On 5.71 0.05 99.1
 - D S On 14.65 0.08 99.4

S= Synthetic RW A = Actual RW, T = 25 °C, aerated VSSF EW cell

TREATABILITY TEST RESULTS AMMONIA NITROGEN REMOVAL RATE CONSTANTS (day⁻¹)

<u>Run</u>	<u>Feec</u>	<u>d Air</u>	<u>PFR</u>	<u>CSR</u> 3	<u>BTIS</u>
A	S	On	1.5	20.9	3.2
В	S	Off	0.5	0.9	0.5
С	А	On	1.5	35.2	<mark>3.</mark> 6
D	S	On	<u>1.6</u>	<u>56.6</u>	<u>4.4</u>
Aver	age:	A, C, D	1.5	<mark>37.</mark> 6	3.7

S= Synthetic RW A = Actual RW, T = 25 °C, aerated VSSF EW cell

CW/EW IMPACT ON WETLAND SIZE (NH₃-N: 15 \rightarrow 1.5 mg/L, 16,000 m³/d, 25 °C)

Minimum Wetland Size

** Substrate 0.7 m thick, $\theta = 1.04$ (Kadlec & Knight, 1996)

OBJECTIVES OF THE ON-SITE TREATABILITY TEST AT ROSEBEL

- Compare Off-Site Indoor Testing with On-Site Outdoor Testing With Actual Feedstock
- Simulate the High Performance Aerated Lagoon Which Will Precede EEW Cells
- Evaluate Growth & Root Penetration With Local WL Plant: Typha domingensis
- Carry Out A Tracer Test For An EW Cell
- Test The Potential Of A Nearby Swamp Forest Natural Wetland To Polish EW System Effluent

RGM Pilot Result on Dec. 2005

ROSEBEL SURINAME ON-SITE PILOT TESTING CYANIDE REMOVALS DURING ON-SITE TREATABILITY TEST

	Aerated Lagoon Cell	Aerated VSSF EW Cell	AL And Both EW Cells	Overall System
May 18 - Jul. 12	54%	50%	85%	88%
Aug. 2 – Nov. 15	53%	33%	80%	84%
Nov. 29 - Dec. 13	61%	6%	75%	83%
Dec. 27 - Jan. 17		40%	48% (EW Cells only)	71%

ROSEBEL SURINAME FULL-SCALE AERATED LAGOON

al fine

ANAEROBIC BIOREACTORS AS PART OF AN EW SYSTEM

NATURE WORKS TRAIL EW DEMO

- Teck Cominco Lead Zinc Smelter in Trail, BC
- Old Landfill Leaching Zinc & Cadmium
- Old Arsenic Dump Pit Leaching Arsenic
- Leachates Treated in Smelter WWTP
 - Slip streams available for treatment
- Demonstration Scale Engineered Wetland System Commenced in 1997
 - Initially only periodic operations
 - System has evolved steadily
 - Now 5 years of results; summer & winter

NATURE WORKS TRAIL EW DEMO CONSTRUCTION DETAILS

- Initial phase constructed in 1997 as three gravel bed HSSF EW cells
- Bench scale testing showed need for pretreatment to reduce metals
- 1st ABR added in 1998
- 2nd ABR added in 2000
- System winterized in 2000
- Operated from 289 353 d/yr from 2001 -2005 at ~ 7m³/d

AVERAGE DISSOLVED METAL REMOVAL OVER FIVE-YEARS EW DEMO UNIT, TRAIL, BC

METALS REMOVAL IN DEMONSTRATION ENGINEERED WETLAND SYSTEM 2001 - 2005

	Influent Concentration (mg/L)	Effluent Concentration (mg/L)	Removal (%)
Arsenic	95	0.8	99.2
Cadmium	3.0	0.02	99.3
Zinc	205	3.6	97.5

Nature Works Demonstration System at Teck-Cominco, Trail, BC

PH CONTROL & ABRS AS EV SYSTEMS

SOLID ENERGY HAS LARGE OPEN CAST COAL MINE AT STOCKTON, NZ

• 40 Large Waste Rock Piles

- Stripped mudstone overburden
- Acid-generating

High Rainfall Area

- Several m/y
- High Al ARD
 - pH 3, Acidity 200 800 mg CaCO₃/L
 - 15 <Fe > 50 mg/L
 - 50 < Al > 100 mg/L, Al:Fe ≈ 2:1
 - 200 800 mg/L sulphates
 - High suspended solids, other dissolved metals
- Treatability Test

EW TREATABILITY TEST AT CANMET

DESIGN OF ENGINEERED WETLAND PILOT UNIT FOR STOCKTON

TOTAL EW PILOT UNIT METALS REMOVALS

Metal

Percent Removed

Fe^T

A|³⁺

Ni²⁺

99.7

99.9

<mark>96.</mark>7

CONCLUSIONS

- Fe- & Al-Containing ARD Of Can Be Treated in An EW To High Removal Levels
- An EW Configuration Of An Aerobic Bioreactor, A Limestone Drain & An ABR Is Feasible
- Ferrous Iron Can Be Oxidized Almost Completely In An Aerobic Bioreactor
- OLDs Can Be Operated Under Near Turbulent Flow Conditions
 - Mitigates clogging & armouring
- The Downstream ABR Was Effective In Removing Remaining Dissolved & Suspended Metals

ARD-CONTAMINATED RAIL MARSHALLING YARD

- Marshalling Yard & Rail
 Spur
 - Historic NiS slurry transport in open cars
 - Contamination of GW & surface water with ARD
- Multi-Phase Project
 - Sampling, Hydraulic Studies
 - Potential For uncontaminated water diversion
 - Treatment of ARD with ABRbased EW
 - Pilot studies at CANMET

CANMET TREATABILITY TEST TRAIN 1 OLD + Settling Pond

	Concentrati Inlet	on (mg/l) Outlet	% Removal
Aluminum	2.1	1.5	25
Cobalt	0.6	0.5	11
Copper	2,6	2,2	15
Iron	135.0	83.5	52
Nickel	12.7	11.9	6
Zinc	0.8	0.7	17
	Influent pH	= 7.5	

CANMET TREATABILITY TEST TRAIN 1 ABR # 1

	Concentrati Inlet	on (mg/l) Outlet	% Removal
Aluminum	1.5	0.4	71.4
Cobalt	0.5	<0.01	98.5
Copper	2.0	<0.01	99.7
Iron	83.5	6.8	91.9
Nickel	12.0	0.02	99.8
Zinc	0.7	0.09	87.0
	Influent pH	= 7.5	

CANMET TREATABILITY TEST TRAIN 2 ABR # 1

	Concentrati Inlet	on (mg/l) Outlet	% Removal
Aluminum	2.1	0.2	91.7
Cobalt	0.6	<0.01	99.0
Copper	2.6	<0.01	99.9
Iron	135.0	2.5	98.1
Nickel	12.7	<0.01	99.9
Zinc	0.8	0.04	95.3
	Influe	nt pH = 3.0	

TREATABILITY TEST -CONCLUSIONS

- ABRs Provided Good Treatment of Both ARD and Pre-Treated NMD
 - Handled low pH influent in Train #2
 - Pre-treatment not needed in this case
 - Rate constants determined
- Dosed OLD Performance Mixed
 - Protected from Al(OH)₃ clogging
 - Did not prevent ochre armoring
- Pulp & Paper Biosolids Were Good ABR Substrates
 - Have to watch out for TSS & Metals leaching

QUESTIONS?

INTEGRATED TREATMENT SYSTEMS

PHYTOSTABILIZATION COVERS

UNSIGHTLY UN-VEGETATED OR POORLY VEGETATED SURFACE

EROSION AND SURFACE RUN-OFF CARRY CONTAMINANTS OFFSITE

PRECIPITATION EASILY INFILTRATES

PERMEABLE, CONTAMINATED SOIL, LANDFILL, WASTE ROCK ACCUMULATION OR TAILINGS PILE

BEFORE

INFILTRATING PRECIPITATION MOBILIZES AND LEACHES METALLIC & ORGANIC CONTAMINANTS

BACTERIA MAY HELP GENERATE MORE CONTAMINATION IN LEACHATES

WINDS BLOW

CONTAMINANTED

DUST OFF SITE

PHYTOSTABILIZATION COVERS

COVER SITE WITH LAYERS OF PHYTOSTABILIZATION AMELIORANTS, FILLERS, FERTILIZERS, ETC. TO SEAL SURFACE

AMELIORANTS, PLANT EXUDATES, MICROBES SEQUESTER & IMMOBILIZE CONTAMINANTS

CONTAMINATED PERMEABLE MATERIAL ISOLATED AMOUNTS OF INFILTRATING PRECIPITATION MINIMIZED

CONTAMINANT METALS & HEAVY ORGANICS BOUND UP IN NON-BIOAVAILABLE, NON-LEACHABLE FORMS UPWELLING OF POLLUTED WATER PREVENTED

LITTLE REMAINING LEACHATES TREATED

ADVANCED BIOENGINEERING SYSTEM FOR MINING WASTES

CTD-GENERATING

WASTE ROCK OR TAILINGS PILE

PHYTOSTABIILIZE NEW SURFACE TO MINIMIZE INFILTRATION AND _ ACID-GENERATION

VEGETATE SURFACE WITH PROPASYS

RE-CONTOUR SURFACE FOR MORE EFFICIENT RUN-OFF INSTALL LIVING WEB ON VERY STEEP SLOPES

ARD

DIRECT RELATIVELY "CLEAN" STORMWATER RUNOFF TO STORMWATER WETLAND FOR TREATMENT

DIRECT MINIMIZED ARD TO ENGINEERED WETLANDS FOR TREATMENT

WETLAND

ADVANCED WETLANDS-BASED SOLUTIONS FOR THE MINING SECTOR

- Treatment of Dissolved Metal Cations & Anions
 - Nickel, zinc, copper
 - Arsenic, molybdenum
 - ABR-Based Engineered Wetland Systems
- Removal of Biologically Oxidizable Pollutants From Mine Drainage
 - Ammonia, CN
 - Aerated VSSF EWs
- ARD Treatment
 - Aerobic Bioreactor/OLD/Pond/ABR EWs
 - ABR-Based Engineered Wetland Systems
- Integrated Treatment Systems
 - Phytostabilization + SW WLs + EWs

SOME PROJECTS HAVE MASCOTS

