Prediction of Metal Loadings from Groundwater to Tidal Waters

Leslie Smith (UBC) Les MacPhie (Geocon) Densie Leahy (Geocon) Rudy Maji (UBC) Marc Wen (Rescan)

Overview

- Contaminant loadings to the near-shore marine environment and concentrations beneath the seabed
- Hydrologic studies and loading estimates for the Beach Dump at Island Copper Mine
- Synthetic case illustrating contaminant loading from an onshore source to discharge in the intertidal zone

Key Processes

- Transient variations in hydraulic head and groundwater velocity created by tidal cycle
- Location of the fresh water salt water interface beneath the shoreline
- Migration of seepage face across intertidal zone
- Dilution beneath the intertidal zone as sea water mixes with fresh water

Salt Water Interface

- Steady state estimate of solute load
- Variations in solute loading through the tidal cycle

Beach Dump

- Disposal of 560 M tonnes of waste rock, about 95% is below mean sea level
- Exfiltration pathway for Pit Lake, along with remnant flood channel
- Cap of unsaturated waste rock (forms zone 2–10 m thick) with a till cover

Groundwater Flow System

- Conceptual model of Beach Dump based on three zones reflecting different origins of water:
- Upper zone originating as rainfall infiltrating through surface of Beach Dump
- Middle zone transmitting surface water that exfiltrates from Pit Lake
- Lower zone containing seawater
- Based on salinity profiles in boreholes, sustained flow from surface infiltration and outflow from Pit Lake creates a net flow toward Rupert Inlet in the upper ~20 m of the Beach Dump

Estimated Average Annual Infiltration on Beach Dump

	Internal	External	Entire
	Drainage	Drainage	Surface
	(153 ha)	(112 ha)	
Annual ppte	1900 mm/yr	1900 mm/yr	
ET	530 mm/yr	530 mm/yr	
Runoff		420 mm/yr	
Infiltration	1370 mm/yr	950 mm/yr	
Volume	2.1 Mm ³ /yr	1.1 Mm ³ /yr	3.2 Mm ³ /yr
Per Unit Area			1200 mm/yr

Water Balance Estimates for Beach Dump

Average annual inflow from Pit lake	6.5 Mm³/yr
Infiltration from direct precipitation – 1200 mm of 1900 mm rainfall	3.2 Mm ³ /yr
Infiltration pathways from North Dump	0.3 Mm ³ /yr

Estimates of hydraulic gradient

- Accurate estimates of hydraulic gradient are challenging
 - high permeability implies low gradients
 - non-uniform fluid density
 - tidal fluctuations
- Average water levels calculated over tidal cycles

June 20-July 4 2001

	L	Δh	grad		L	Δh	grad
W4 to shore	150	nil	nil	W4 to shore	150	0.6 cm	4E-5
W5 to shore	150	8 cm	5E-4	W5 to shore	150	18.1 cm	1E-3
W6 to shore	100	1 cm	1E-4	W6 to shore	100	9.7 cm	1E-3
W10 to shore	330	nil	nil	W10 to shore	330	27.1 cm	8E-4

Hydraulic Conductivity Estimate Based on Tidal Analysis

 Analyze three vertical sections though Beach Dump

 Use code SEEPW – considers only a uniform fluid density

Figure E-8

Geometry and Mesh of Seepage Model

Best Fit k = 25 cm/s

Figure E-9

Section D-D – Calibration of k Value at Well 4

Best Fit k = 40 cm/s

Figure E-17

Section F-F – Calibration of k Value at Well 10

Hydraulic Conductivity

- Estimated large-scale hydraulic conductivity of Beach Dump in the range from 10 - 40 cm/s
- This is a highpermeability system, with K on the order of 10⁻¹ m/s

Variations in Flow Patterns in Beach Dump Due to Tides

- Base case hydraulic conductivity of 25 cm/s
- Assume water with uniform density throughout the dump
- Superposition of two solutions, one for a 20 m thick sustained flow, the second for tidal influences over full thickness of dump

bhpbilliton Geocon Figure E-Model D Case 2 Combined Mesh and Boundary Conditions

Figure E-19

Geocon

bhpbilliton

Model D Case 2 Combined Head, Velocity and Gradient at Hour 0

Figure E-20

Geocon

bhpbilliton

Model D Case 2 Combined Head, Velocity and Gradient at Hour 2.0

Model D Case 2 Combined Head, Velocity and Gradient at Hour 3.8

Figure E-24

Geocon

bhpbilliton

Model D Case 2 Combined Head, Velocity and Gradient at Hour 9.1

Figure E-25

Geocon

bhpbilliton

Model D Case 2 Combined Head, Velocity and Gradient at Hour 10.8

Model D Case 2 Combined Head, Velocity and Gradient at Hour 12.8

Figure E-27

Geocon

bhpbilliton

Model D Case 2 Combined Head, Velocity and Gradient at Hour 14.6

Net Motion of Water Packets

- Representative sets of path lines followed by a water packet during the tidal cycle
- Sustained flow system above 20 m depth includes effects of both fresh water recharge and tidal oscillations
- Below 20 m depth, tidal oscillations

Travel Time Estimate from Pit Lake to Rupert Inlet via Beach Dump

- 1000 m flowpath, porosity of 0.35
- Estimate of travel time derived from water balance is 1.4 year
- Overflow at barrier wall began February 1999
- Infer Pit Lake water may have reached Rupert Inlet in mid to late 2000
- Recent inflows from Pit Lake are a minor contributor to metal loading

Tidal Mixing Zone

Figure E-36

Geocon

bhpbilliton

Configuration of Tidal Flushing Zone for k = 25 cm/s

Concentration Data (1998-2002) Upper 20 m of Beach Dump

Zinc - mg/l	well	range	average	upper bound
	4	0.3 - 1.0	0.4	0.8
	5	0.1 - 0.5		
	6	0.1 - 0.7		
Copper - mg/l				
	4	0.005 - 0.04	0.015	0.03
	5	0.002 - 0.02		
	6	0.003 - 0.02		

Beach Dump Seeps

- Sampled at end of a low tide in June 2003
- Two seeps collected just above the water line
 - zinc 0.1 and 0.11 mg/l
 - copper 0.0004 and 0.001 mg/l
- Indication of tidal dilution: zinc conc. 2 6 times smaller than values measured in the upper 5 m of boreholes, copper conc. about 10 times smaller

Steady State Approximation to Loadings to Rupert Inlet

 Flow derived from Pit Lake water balance and infiltration estimates (sustained flow system) = 10 Mm³/yr

 C_{AVG} based on average values measured in upper 20 m of wells in the Beach Dump

Steady State Estimate of Loadings to Rupert Inlet (kg/year)

	Average	Upper Bound
Zinc	4000	8000
Copper	150	300

Synthetic Simulations

Salt Water Interface

Dilution Factors at Seepage Face for Scenario Shown Here

 Averaged over the tidal cycle and calculated relative to the source concentration

High tide line	1.6
Mid-tide line	3.5
Low tide line	560

Summary

- In general, tidal water sites are challenging systems to monitor and analyze due to complex hydrodynamics and salinity effects
- Reliable estimates of steady state loading at Island Copper Mine have been developed by focusing on largescale behaviour

Summary

- Modeling suggests the majority of contaminants discharge across the intertidal zone, not below the low tide line
- The variation in loading during a tidal cycle is strongly dependent on the interaction of the migrating seepage face across the intertidal zone with the spatial distribution of mass within the groundwater plume

Acknowledgements: BHP Billiton, NSERC

Water Quality