

The Past, Present and Future for Selenium Treatment

14th Annual BC MEND Workshop November 29, 2007 Kevin W. Conroy, P.E.

Where is it found?

- Paint, pigments, dye formulating
- Electronics
- Glass manufacturing
- Insecticide production
- Pulp and paper
- > Ash piles, FGD blowdown,
- Coal/oil combustion
- Agricultural water
- Petroleum processing
- Mining operations

Why is it a problem?

- Aquatic life hazard
 - ➤ 1983 Kesterson National Wildlife Refuge California
 - ➤ Birth defects/death of birds, small animals, fish
- Selenium cycle not well understood
 - Uncertainty on bioavailability
 - Even if bioavailable what is toxic?
- Often times low concentration, high volume - makes treatment expensive

How is it regulated?

- ➤ 5 µg/L Freshwater aquatic life
- > 50 µg/L Primary DWS MCL
- U.S. Fish and Wildlife Service has recommended 2 μg/L to protect fish, waterfowl and endangered aquatic species

Chemistry

- > 3 primary oxidation states
 - → -2 selenide
 - >+4 selenite (HSeO₃- and SeO₃-)
 - >+6 selenate (SeO₄-2)
- Chemical equilibrium principals don't really apply
- Driven by
 - > Redox conditions
 - ➤ Biological activity
 - > Sorption processes

Past and Present - EPA BAT

- Ferric coagulation/filtration
 - ➤ Typically pH <7
 - Coprecipitation effect
 - Effective removal requires reduction of selenate to selenite
 - > Problem if arsenic present
- Lime softening
- > Reverse osmosis
 - Non-preferential process
 - Pretreatment due to other typical mine water issues may be required

Past and Present - EPA BAT

- Electrodialysis
- > Alumina
 - ➤ Selenite adsorbed at pH range of 3 8
 - ➤ Silica can interfere at pH >4
 - Selenate adsorption is poor
- Ion exchange
 - > Need oxidized divalent selenate
 - Competing ion effects can hinder effectiveness
 - Some specialty resins tested

Past and Present - EPA BDAT

- Ferrihydrite precipitation with concurrent adsorption of selenium on the ferrihydrite surface
- ➤ For adsorption need ferric ion (Fe⁺³) present
- ➤ Most effective removal at pH 4-6
- Somewhat effective up to pH 8
- Phosphate, silicate, arsenic, carbonate can interfere

- Selenium Treatment/Removal Alternatives Demonstration
- Report issued in 2001
- > Three technologies tested in field
 - Ferrihydrite Adsorption (baseline)
 - Catalyzed Cementation
 - ➤ Biological Reduction
- One technology tested on bench scale
 - ➤ Enzymatic Reduction

- ➤ Objective treat to <50 µg/L
- Work done in 1999-2001
- Basis KUCC Garfield Wetlands-Kessler Springs site
- > <50 to >10,000 µg/L Se
- >95%+ selenate
- > TDS 1,000 5,000 mg/L

- > Did not work on a consistent basis
- Various iron types, concentrations and ratios used
- Could achieve objective but at prohibitive reagent consumption
- Questions on TCLP stability

- Catalyzed cementation
 - Developed for arsenic, selenium, thallium removal
 - Removes metals by cementation on the surface of iron particles
 - Believed to work on both selenite and selenate
 - Proprietary catalysts used
 - Bench test work had shown favorable results
 - > Did not work on a consistent basis

- ➢ Biological Reduction (BSeR™)
 - Used anaerobic solids bed reactors
 - Selenium reduced to elemental selenium by biofilms and proprietary microorganisms
 - Molasses used as carbon source
 - Was able to consistently meet objective
 - Over 70% of samples less than detection (2 μg/L)

Economics

	BDAT	Cementation	BSeR™
Capital	\$1.0M	\$1.1M	\$0.6M
O&M	\$2.1M	\$1.2M	\$0.14M
NPV	\$17M	\$9.5M	\$1.1M
\$/1,000 gal	\$13.90	\$8.17	\$1.32

Based on 300 gpm plant, 2 mg/L selenium 2001 dollars

Past and Present - Nanofiltration

- ➤ Some test work by USGS in 1996
 - ➤ Agricultural drainage
- Selenate removal better than selenite
 - Not surprising designed for divalent not monovalent ions
- > 95+ % removal at Se<1,000 µg/L
- ➤ Membrane scaling is an issue in high SO₄-2 water

Problems With the Past and Present

- Non-selective processes
- Large amounts of secondary waste
- Multiple reagents
- Okay for bulk selenium removal with other metals
- > Can't consistently get to <10 μg/L

Biological Reduction – General

- Studied for decades
- Microbes degrade/transform contaminant because
 - > Energy source
 - Detoxification mechanism
 - > Resembles another ion
 - Combination of the above
- Anaerobic reactors
 - > Reduction to elemental selenium
 - ➤ Nitrate/sulfate interference?
- > 90%+ removal reported

Biological Reduction – Ponds/Wetlands

- Panoche Drainage District San Joaquin Valley
 - >74-1,400 µg/L due to Se rich soil
 - > Primarily selenate form
 - Numerous bioremediation studies
 - ➤ Algal-Bacterial Selenium Removal (ASBR)
 - ➤ Anoxic ponds reduce selenate to selenite to elemental and settle
 - ➤ Generally about 80% maximum removal

Biological Reduction – Ponds/Wetlands

- ➤ Additional California work 2005
 - Constructed wetlands
 - ➤ 9 plant species tested
 - ≥63% 71% removal
 - >~20 μg/L influent, 3 6 μg/L effluent
- Problem with ponds/wetlands
 - >HRT's in days

- More selective microbes isolated
- Advances in fixed film/biofilm media
- Better understanding of operating conditions
- Result retention times have been reduced from days to hours for active systems
- Advances also made in passive technology

<u>ABMet®</u>

- Offered by GE Water and Process Technologies
- ➤ Same as BSeR™ process
- Several FGD projects at commercial scale
- > 3,000 − 5,000 µg/L selenium
- > Up to 20,000 mg/L chloride
- > 98% 99% removal projected
- > Effluent as low as 10 μg/L

Passive Selenium Reducing Bioreactor

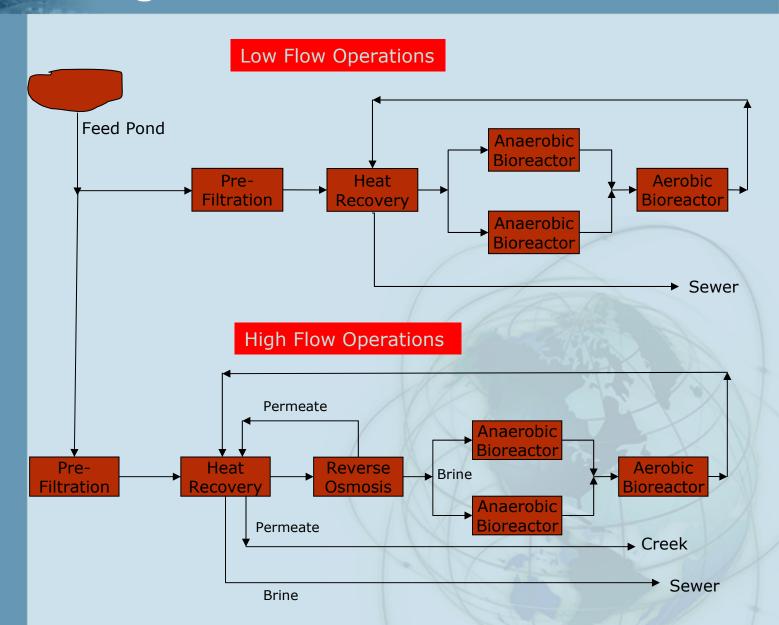
- > Tested on Colorado Western Slope
- Bureau of Reclamation Science and Technology Program
- > Influent typically ~20 μg/L
- ➤ Spike to 70 µg/L
- > 1,000-2,000 mg/L SO₄-2 background

Passive Selenium Reducing Bioreactor

- Four reactors with different substrate compositions
- Organic substrate composed of wood chips, hay, manure
- > ZVI incorporated; no advantage
- ➤ 12 hour detention time adequate, optimization possible
- Operated for 20 weeks
- > Effluent typically <2 μg/L
- ➤ Up to 98% removal

Active Anaerobic Bioreactor System

- Waste rock seepage
- > 250 gpm capacity
- Fixed film bioreactor with high surface area media
- Molasses used as carbon source
- Phosphate/urea added
- Reverse osmosis system used during high flow – 700 gpm
- Bioreactor feed switched to RO brine



Active Anaerobic Bioreactor System

- > 18 hour retention time
- Low flow (raw seepage)
 - > Se ~30 µg/L
 - > SO₄-2 ~6,000 mg/L
- > High flow (RO brine)
 - > Se ~70 µg/L
 - $> SO_4^{-2} \sim 13,500 \text{ mg/L}$

Active Anaerobic Bioreactor System

- > Effluent goal is 10 μg/L
- > Pilot plant operated for 7 months
- > High sulfide was an issue
 - ➤ Discharge quality
 - > Solids fouling
- Full scale system designed and constructed
- Operating for about 18 months
- Compliant water being produced

Future?

- > Selenium with other metals
 - Conventional lime-iron based processes for bulk removal
 - ➤ Biological polishing process
- Low concentration selenium
 - ➤ Biological reduction
 - ➤ Both active and passive options
- Combinations with other processes i.e. membranes
- Reduce costs to <\$5.00/1,000 gal? Maybe down to \$1.00/1,000 gal?



Biological Reduction – Application Keys

- Nutrients are vital in establishing microbial population
- Understanding of site chemistry and environmental interactions
- Analytical methods
 - Can get discrepancies in total and dissolved
 - > Possibly related to digestion
 - > Volatile selenide
- Need for aerobic post-treatment
 - > High COD, P, N

Conclusions

- All sites must be evaluated individually
- Paper designs risky development work always recommended
- ➤ Selenium can be removed to <10 µg/L
- Cost of selenium reduction to low levels is decreasing

