Hydrogeochemical Considerations related to Disposal of Thickened Tailings, including Paste

Rens Verburg Golder Associates, Redmond, USA

15th ANNUAL BC/MEND ML/ARD WORKSHOP December 3rd and 4th, 2008

Presentation Overview

Introduction Thickened Tailings > Characteristics Potential Benefits Environmental Benefits Case Study A Case Study B Conclusions

Introduction

Comparison of Characteristics

	Slurry	Thickened	Paste	Filter Cake
Segregation	High	Slight	None	None
Solids Content	30-50%	60-65%	70-75%	75-80%
Supernatant	Considerable	Some	None	None
Post-Placement Shrinkage	High	Some	Insignificant	None
Seepage	High	Some	Insignificant	None
Rehab Timing	Delayed, often considerable	Almost Immediately	Almost Immediately	Immediately
Angle of Repose	Up to 1°	1° to 3°	3° to 10°	Up to Erosion Angle
Potential Water Recovery	Up to 53%	Up to 67%	Up to 82%	Generally above 82%

Adopted from J. Johnson, Golder - Denver

Potential Benefits of Dry Disposal

- Siting flexibility
- Minimal liquid/solid segregation
- Minimal particle segregation
- Denser/lower permeability
- Smaller footprint
- Reduced need for dams
- Extend life of facility
- Reduced care and maintenance

- Less water to manage
- Less seepage/ contaminant migration
- Water conservation
- Engineered material
- Less reactive (sulfide oxidation)
- Concurrent/progressive closure
- Improved aesthetics
- Potential for co-disposal
- Enhanced sustainability

Fact or Fiction?

 Assumed environmental benefit:
 Sulfide oxidation/ARD generation retarded due to high degree of saturation

> However:

Lack of operational verification
 Lack of systematic studies

Case Study A

Arid region
 20-week
 HCT program

Three thickened tailings samples Filter cake

- ➢ Paste
- Thickened tailings

Case Study A – Tailings Properties

> Moisture content: \succ Filter cake: 16% \geq Paste: 22% Thickened tailings: 29% \geq Sulfide Sulfur: 31% > NNP: -957 kg CaCO₃/ton > NPR: < 0.1

HCT Results - pH

HCT Results - Sulfate

Case Study B - Neves Corvo Mine

- Underground high-grade Cu-(Sn)-Zn mine in Iberian Pyrite Belt since 1989
- Lundin Mining
- Volcanogenic Massive Sulfide (VMS)

Tailings Management

- Underground paste backfill and in unlined tailings impoundment (135 ha, 15 Mt)
- Production of 42 Mt anticipated (14 Mt underground)
- Sustainable operational and post-closure tailings management: dry disposal vs. subaqueous deposition

- > No requirement for new dam raises (cost, risk)
- No increase in footprint
- No requirement for maintaining pond in perpetuity (arid climate)
- Co-mixing with PAG waste rock
- Concurrent reclamation
- Regulatory pressures

Case Study B – Tailings Properties

> Moisture content: \succ Filter cake: 18% \geq Paste: 26% Thickened tailings: 31% ➢ Sulfide Sulfur: 29% > NNP: -880 kg CaCO₃/ton > NPR: < 0.1

Tailings Environmental Stability

Field Cell (2002 - 2005)

Paste Pilot (2005 - current)

Bench-Scale Study - pH

Bench-Scale Study - SC

Paste Trial

> 35,000 m³ in 1-hectare area > Objectives:

- Experience with plant operation/placement
- Environmental monitoring
 - Suction lysimeters, piezometers, standpipes
 - Runoff collection
- Geotechnical monitoring
 - Tensiometers
 - Berm design (PAG waste rock)
- > Trials of cover designs
 - Low-flux cover without capillary break
 - Low-flux cover with capillary break
 - Barrier cover (sand/bentonite)

Pilot Cell Construction

Cover Placement and Instrumentation

Paste Trial

Draindown Modeling

Unsaturated flow modeling for estimation of seepage ➤ Ward Wilson (UBC) Fernando Junqueira (Golder-Burnaby) >SVFlux[™] - SoilVision > 30-meter paste layer >No cover Low-flux cover Barrier cover

100-Year Saturation Profile – No Cover

100-Year Saturation Profile – All Scenarios

Paste Trial - Pore Water pH Trends

Paste Trial - Pore Water pH Trends

Low-Flux Cover - No Capillary Break

Low-Flux Cover - Capillary Break

Fact or Fiction?

Fiction:

- ARD not a concern when using thickened tailings
- Saturation can be maintained in arid climate without engineered controls

Fact:

- Lag time to ARD is proportional to moisture content – "operational window"
- With engineered controls, saturation and prevention of ARD is feasible
- Cover design is critical
 - in arid climate, low-flux cover better than barrier

Conceptual Paste Placement

Early stage of filling

Conceptual Paste Placement (cont'd)

Progressive paste placement

Conceptual Paste Placement (cont'd)

Nearing final paste placement

Acknowledgments

Mafalda Oliveira (Lundin Mining)
 Ward Wilson (UBC)
 Fernando Junqueira (Golder – Burnaby)
 Cheryl Ross (Golder – Redmond)

Thank you for your attention

Any questions?

