

Northgate Minerals Corporation – Kemess Mine

Generating Dam Construction Material

From Tailings Sand

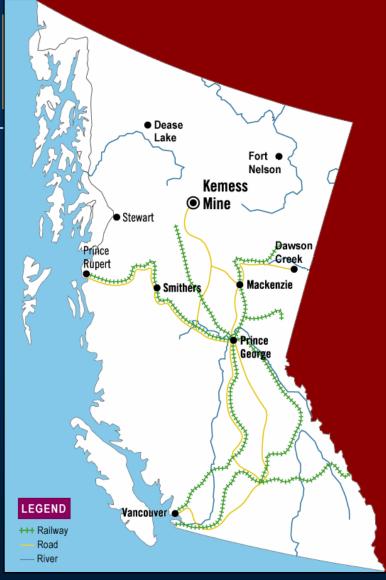
MEND 2008, Vancouver, B.C.

Harold Bent, P. Ge

Environmental Manager

Presentation Outline

- Program Objectives & Fundamentals
- Evaluation of suitable rock for generation construction material
- Sand Plant Beta Testing Verification
- > Operational Procedures
- Placement of De-sulphidized Sand
- Summary & Benefits



Introduction to Northgate

Located in north-central British Columbia

- > Cu Au Open Pit
- Mining rate
 - 146,000 tonnes / day
- Mill throughput
 - 52,325 tonnes / day
- Life of Mine Reserves (Nov. 1'08 to July 28'11)
 - >356,000 ounces of gold;
 - >125 million lbs copper

Today's Kemess South Mine

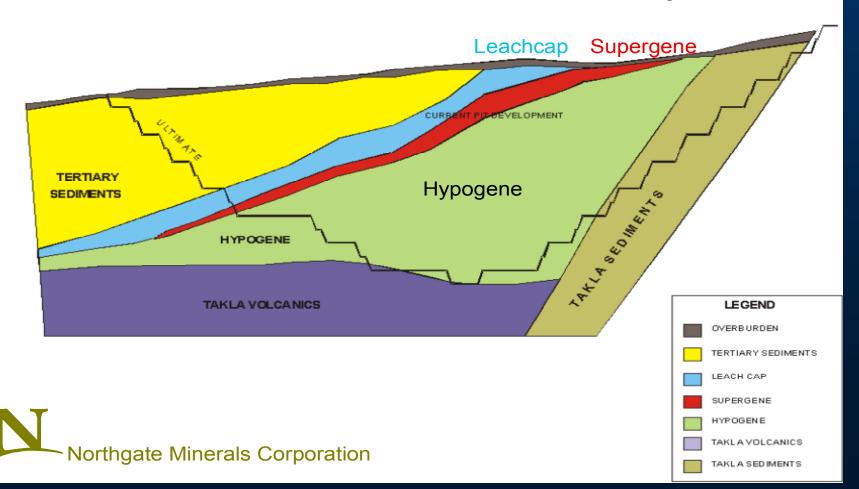
Fundamental Motivation

- Capital costs of tailings storage facility (TSF) one of the most significant on the minesite
- The 2002 TSF design required 30 Mt of NAG rock
 - Sourced from the open pit a distance of 7 kms from the TSF,
 - Eliminate dual use of open pit mine fleet (Ore delivery only)
- Reduce & eliminate construction borrow development
- Reduce TSF as less storage is required

Fundamental Objectives

- Generate construction material from Tailings Sand
 - Replace Earth Fill Construction with De-sulphidized Tailings Sand
- Environmental specifications
 - Produce a construction material that does not generate poor water quality, i.e. ARD/ML considerations
- Engineering specifications
 - Produce a material suitable for d/s buttress zone placement



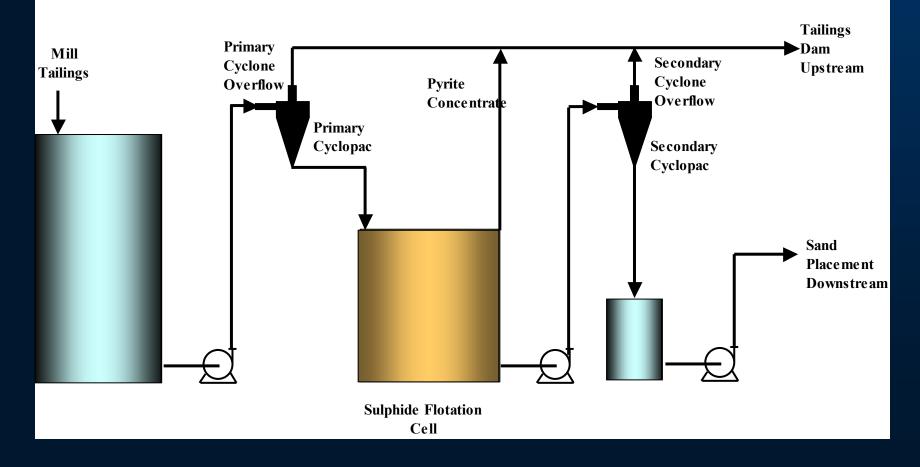


Source Material & Analysis Challenges

- Evaluation of source material Kemess Ore
 - Leach Cap, Supergene, Hypogene & Takla Volcanic
 - ARD/ML potential of d/s buttress material
 - Time to acidity of u/s beach material
- Timely in house analysis & communication
 - Reliable analysis that is responsive to operational constraints
 - Procedures for documentation, verification & reporting

Kemess South Orebody

Evaluation of Kemess Ore


- Hypogene & Supergene/Leachcap Tailing Sands Tested
 - Sand provided from the Cyclone & Flotation Bench Test
 - ARD/ML Evaluation methods
 - Leach column (Kinetic testing)
 - ICP, ABA & Shake Flask
 - ABA (3 year baseline tails database)
 - TSF supernatant (3 year baseline tails database)

Sand Plant Flowsheet

Environmental Testing

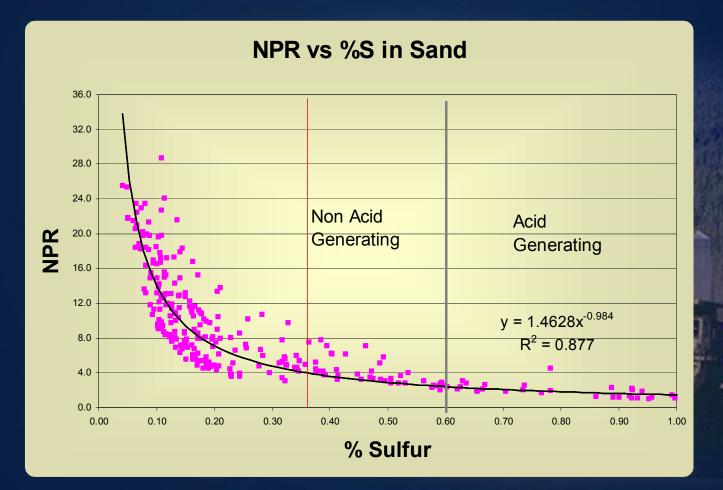
- Hypogene Tailings Sand
 - No ARD with successful 2 stage Cyclone + Flotation
 - No long-term metal leaching concern
- Supergene/leach cap Tailings Sand
 - No ARD concern (flotation not necessary)
 - A long-term metal leaching concern, Se & Sb
 - Would require additional treatment

Hypogene Ore tailings sand selected as TSF construction material

Criteria & Communication

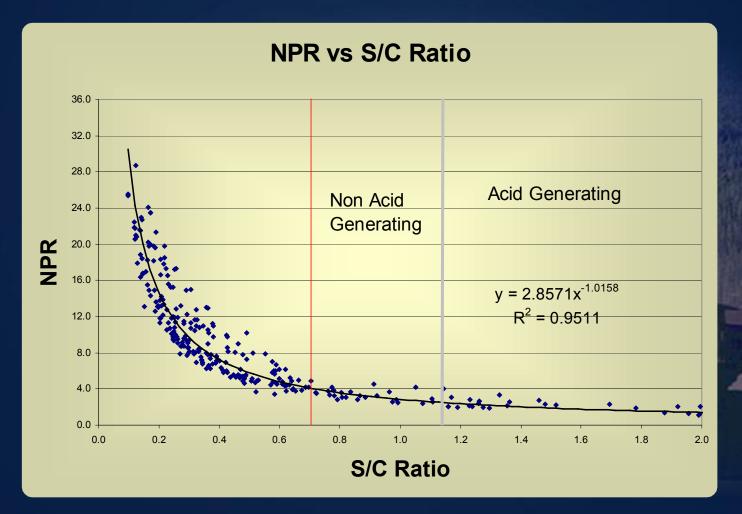
- Permit requirement of NPR >2 and no ML
- Kemess objectives
 - NPR <u>></u>3 and no ML
 - 6 hour notification b/w Mill & Sand Plant

Challenge to provide a timely & reliable test procedure



Sand Plant Beta Test - Verification

- Conducted for 2 months
- All materials reported to the TSF
- Objective to meet Permit requirements for continuous 15 day trial period
- Trial construction sand "cell" placement methodology
- Successful in all accounts



NPR and %TS Relationship

NPR and TS/TC Relationship

Beta Test Results

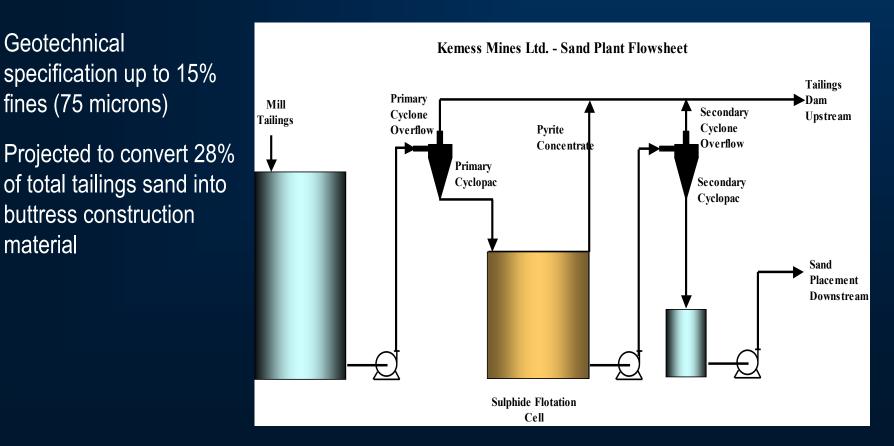
Average NPR = 10.6

Date	MPA	Sobek NP	NPR _{tc}	Fines Fraction% 200
06-Dec-02	4.2	49.4	11.8	7.0
07-Dec-02	8.8	91.9	10.4	9.2
08-Dec-02	8.7	92.5	10.7	7.9
09-Dec-02	14.8	61.8	4.2	5.2
10-Dec-02	9.5	61.5	6.5	10.2
11-Dec-02	6.5	98.8	15.3	6.0
12-Dec-02	11.0	92.5	8.4	7.8
13-Dec-02	13.4	100.0	7.4	7.5
14-Dec-02	10.3	98.1	9.5	7.7
15-Dec-02	8.2	97.5	11.9	7.8
16-Dec-02	3.8	50.0	13.3	6.6
17-Dec-02	6.6	122.9	18.7	8.0
18-Dec-02	7.3	139.4	19.1	8.0
19-Dec-02	8.9	113.1	12.7	6.9
20-Dec-02	8.9	112.5	12.7	72
Averages	8.7	92.1	10.6	7.5

Average Percent Passing 200# = 7.5%

Sand Plant Operation

- Based upon the supporting data and studies
 - TS/TC ratio of 0.7:1 equates to NPR 4
 - TS & TC analysis completed ~ 2hours
 - Communication of results within 6 hrs to Sand Plant Operator



Sand Plant Operation cont'd

- Overflow from Cyclone 1 & 2 is mixed with sulphide float and pumped to TSF
- D/s construction material from 2 stages of cyclone + flotation

 \succ

Plant Operation cont'd

- Upset conditions or change in ore types
- Divert tails to TSF until continuous operation at specification achieved
 - minimum 5 days of operation meeting specification
 - Reduced to 2 days, 24 hours and to 12 hours with plant operational experience and data

Continuous Operational Monitoring

Sample Schedule	Analytical	Material for Testing	Permit
	Parameters		Section
Every 6 hours	TS, TC	Secondary Cyclone Underflow	7
1 per week for 2	Bulk NP (Sobek),	Sand Plant Feed	7
mos. (then monthly)	ICP, Se, Sb	Secondary Cyclone Underflow	
1 per month	ABA, Sobek NP,	Sand Plant Feed	5, 7, 9
	pH, TS, SO4-S,	Sand Plant Tails	
	TC, ICP, Se	Secondary Cyclone Underflow	
Quarterly	Mineralogy –	Sand Plant Feed	5, 7, 9
	Rietveld XRD	Secondary Cyclone Underflow	

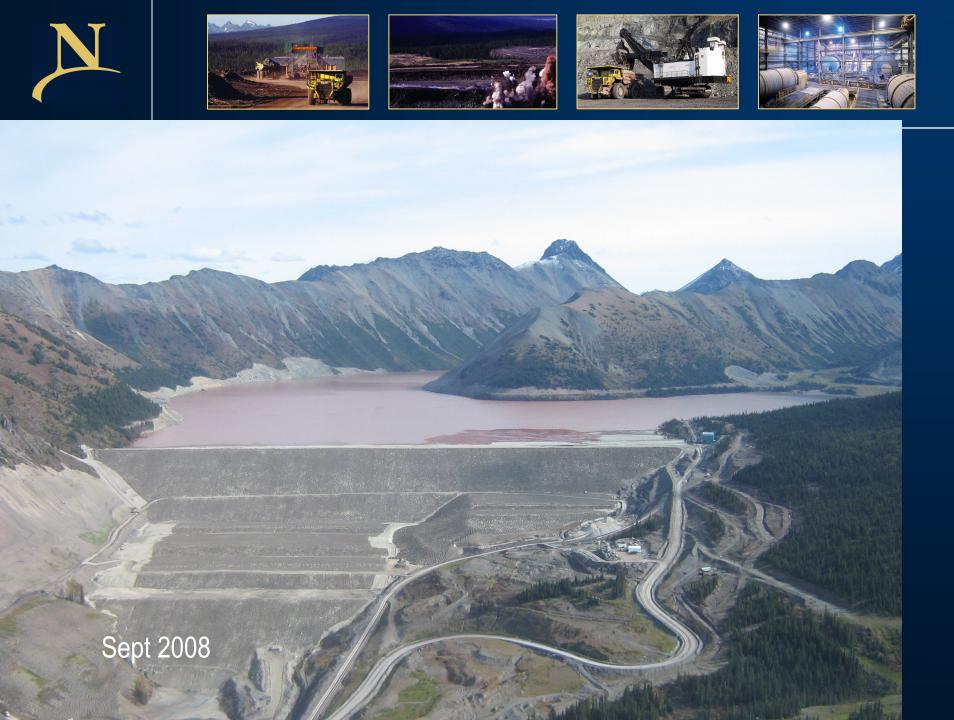
Sand Plant Monitoring After Operational Changes

Sample Schedule	Analytical	Material for Testing	Permit
	Parameters		Section
Every 6 hours	TS, TC	Sand Plant Feed	8
		Secondary Cyclone Underflow	
Every 2 nd Day	Bulk NP (Sobek),	Sand Plant Feed	8
	ICP, Se, Sb	Secondary Cyclone Underflow	

Fail Safe Procedures

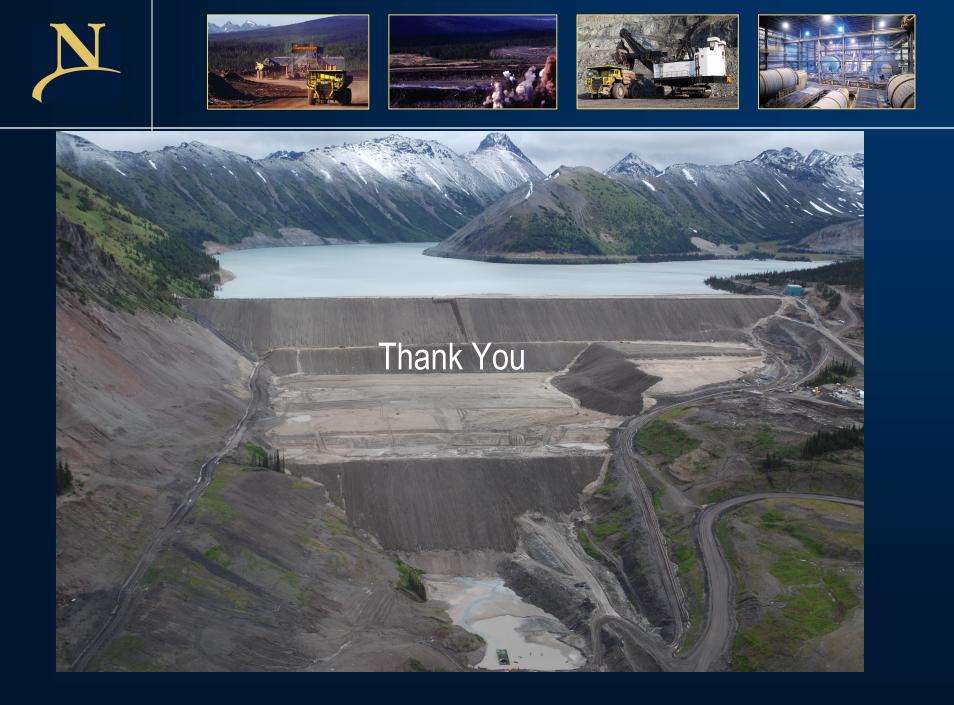
- Fully automated system monitored from the Mill Control room
- Cyclone inefficiencies possible if significant volume changes
 Self-adjusting Pressure & Flow level Sensors to correct tonnage variance
- Disruption in reagent system affecting Flotation
 - Automated alarm system provide immediate Mill Control Room notification
- Regular visual inspections by Plant Operator
- In all cases Tailings sand can be diverted quickly into the TSF

Tailings Beach


Cycloned Sand Fill

Summer 2003

Sand Plant


Summary & Benefits

- Required ~ 2 yrs from the initial concept testing design and permitting to startup of the cyclone plant
- Identified Hypogene tailings sand as construction material, via 2 Stage cyclone + Flotation
- Developed an effective TS/TC & NPR relationship that met operational constraints

Summary & Benefits Realized Cont'd

- De-sulphidized sand construction placement occurred from May 2003 until July 2008.
- > The tailings cyclone plant was constructed at a cost of \$5.4 million.
- Dam construction cost projected to be reduced by > \$20 million over remaining L o M.

