Mitigation of Tailings ARD Potential by Separate Disposal of Bulk and Cleaner Tailings

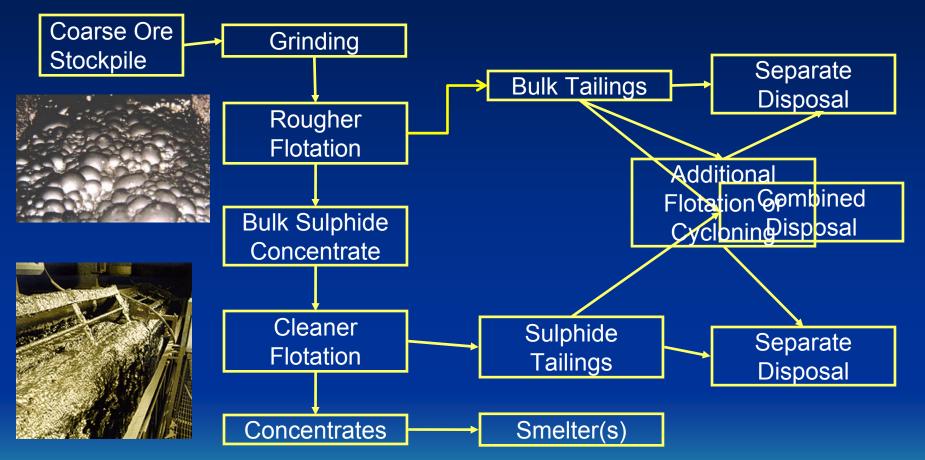
Jennifer Parry, Huckleberry Mines Limited

Stephen Day, SRK Consulting

Acknowledgements

- Huckleberry Mines Limited
- Imperial Metals
- Teck Pogo Inc
- The Pebble Partnership

OUTLINE


- Background
- Application at Huckleberry Mines
 - History
 - Process
 - TMF Operation
 - Comparative Costs
 - Results

Background

- Common flotation process flowsheets provide an opportunity for management of tailings ARD potential:
 - Low sulphide bulk tailings for conventional (beached disposal) if low ML/ARD potential.
 - Sulphide tailings managed to address ML/ARD potential.

Typical Flotation Flow Sheet

Benefits

- Benefits
 - Bulk tailings:
 - Typically 90 to 95% of tailings mass
 - Contain low levels of gangue sulphide minerals due to flotation to bulk concentrate.
 - Contain acid neutralizing gangue minerals because these tend not float.
 - May be suitable for beached disposal and dam construction.

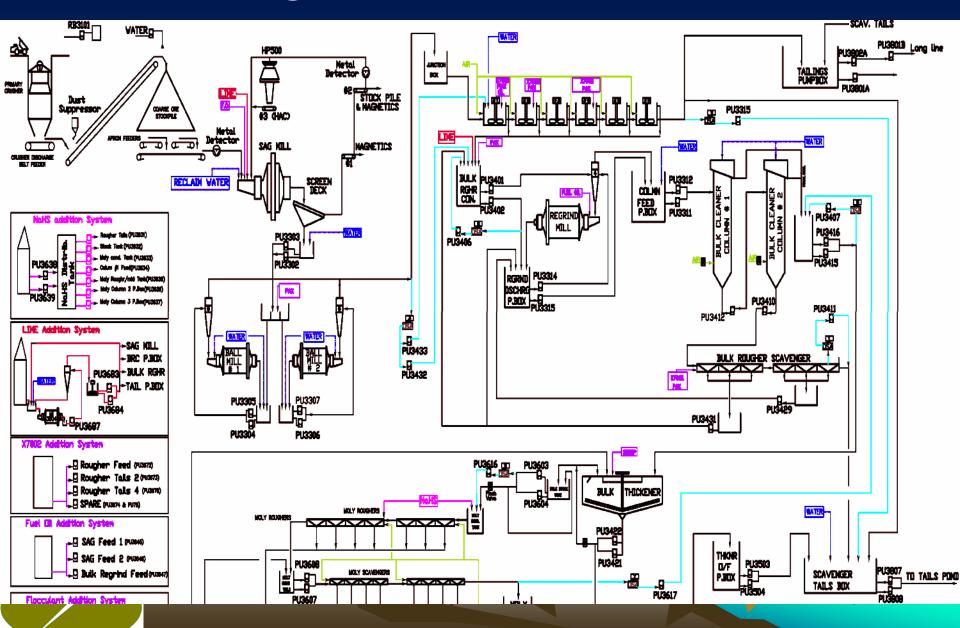
Limitations

- Limitations
 - Challenging if neutralization potential is low.
 - Neutral pH leaching concerns may not be eliminated for potential contaminants associated with pyrite (e.g. sulphate, arsenic, selenium).

Examples of Separate Tailings Management

Mine/ Project	Location	Туре	Status	Bulk Tailings
Huckleberry	BC	Open pit copper and molybdenum	Operating	95%
Red Chris	BC	Open pit copper and gold	Proposed	96%
Pogo	Alaska	Underground gold	Operating	90%
Crandon	Wisconsin	Underground zinc and copper	Proposed	
Pebble	Alaska	Open pit copper and gold	Proposed	90%

Huckleberry Mines Tailings


Overall objective:

 Produce a non-acid generating beach around the TMF2 tailings pond

Objective of separating tails streams: – Minimize pyrite (%S) in the tailings sent to the NAG beach

Grinding and Bulk Flowsheet

Flotation Circuit Operation

- Collector: KAX51
 - 5-8g/t normal operation
 - 10-16g/t for NAG bulk rougher tailings
- Frother
 - X7002 (MIBC mix w/ PGEs and 2EH) on bulk roughers
 - Tennefroth 250 on NAG plant
- pH
 - 9.9-10.2 normal operation
 - 8.4-9 for NAG bulk rougher tailings

Tailings Operation (Summer '08)

- 'Short' Rougher Tailings Line
 - Deposited underwater in TMF2
- 'Long' Rougher Tailings Line
 - Deposited on NAG beach. Could go through or bypass the NAG flotation plant
- Cleaner-Scavenger Tailings Line
 - Deposited underwater in TMF2 until July '08.
 - Deposited in new East Pit tailings pond after July '08.

Tailings Operation (Summer '08)

Short rougher tails and old clnr-scav tails deposition site

Mine Water Management Plan

Bulk Rougher Tank Cells

Bulk Cleaner Columns

Laboratory ABAs

- Operators determine %S using Leco analyzer
- Assayers determine acid neutralization potential and %SO₄ for calculating the neutralizing potential ratio.

Extra Costs of Separate Tailings Stream

- Two cleaner-scavenger tailings pumps:
 GIW 10x12-36 (used most often) + SRL-C 14x12-29. Both 250HP motors.
 – For a similar GIW pump now (LSA 10x12-32):
 - Pump = \$52K + cost of motor (~\$15K) = \$67K
 x 2 = \$134K
- Power:
 - Estimated energy cost to run ~ \$40K/yr

Extra Costs of Separate Tailings Stream

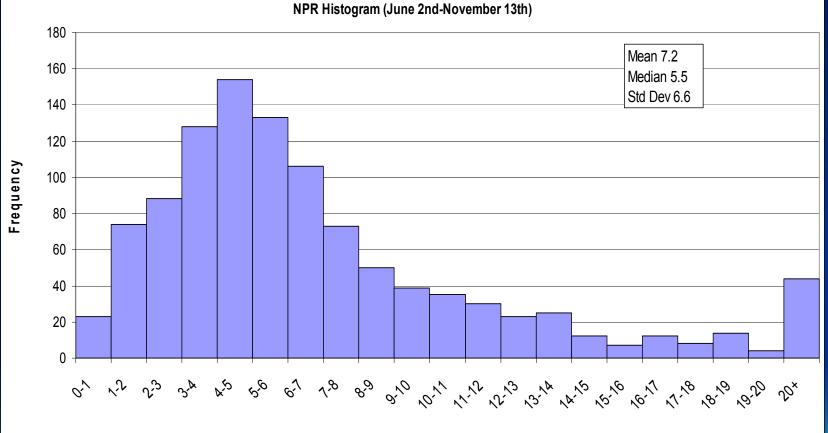
- 2km of cleaner-scavenger tailings line (HDPE 16" DR26) at \$12.36/ft = \$81K + cost of fusing pipe. Fine particles in stream (after regrind mill) so would not need replacing often.
- Also maintenance costs assoc. w/ tailings line and pumps

NAG Plant

• 'Summer-only' flotation plant on long rougher tailings line. PAG concentrate sent to same place as old clnr-scav and short rougher tailings lines (underwater).

NAG Tailings

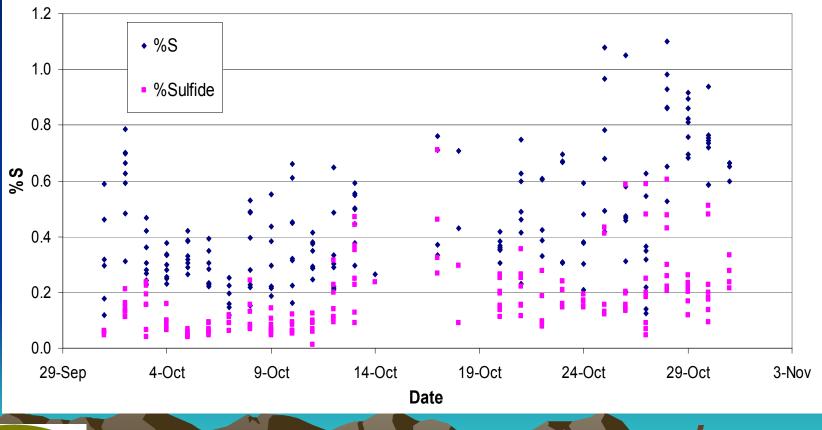
- Have produced NAG tailings over most of the past 6mos with and without the NAG plant.
- Combination of low pH, high xanthate and occasional extra frother in the bulk roughers to provide better feed for the NAG plant or to send tails directly to NAG beach.
- Reduction in cleaner recovery, but generally cleaner circuit handled extra pyrite well.



NAG Tailings

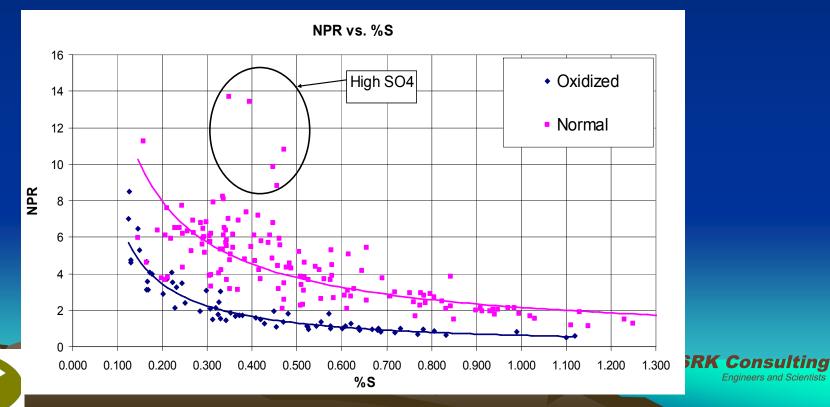
- Tailings analyzed for %S every 3hrs when depositing on NAG beach. If two samples in a row are over sulphur limit, send tailings to short line (underwater).
- Tonnage between samples recorded using SAG totalizer.
- 2.4M tonnes of NAG tailings to beach June 2nd to Nov. 13th. Average NPR of 7.2 based on 1082 samples taken. Tonne-weighted average NPR of 6.7.

NAG Tailings



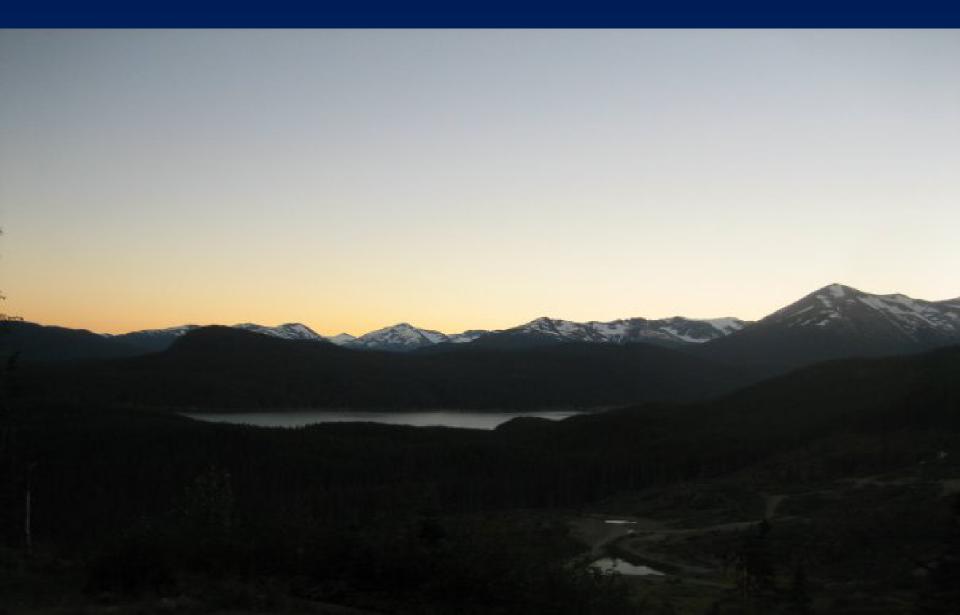
NPR

Sulphur and Sulphide Variability


%S in Bulk Rougher Tails to NAG Beach (October)

SRK Consulting Engineers and Scientists

NAG Tailings Issues


- Fluctuations in %SO₄ and neutralizing potentials (NP). Had to categorize by oxidized (low NP) vs. non-oxidized ore types.
- Mechanical issues with the NAG plant.

Conclusions

- Separating tailings streams has allowed HML to produce a NAG tailings stream directly from the mill.
- Control of tails NPR based on %S can present challenges with variation in the ore body
- Further flotation (NAG plant) sometimes necessary to produce NAG tails; e.g. not able to produce NAG tails from stockpiled East Zone ore without the NAG plant.

QUESTIONS?

