Using Critters, Clams and Fish to Define "Real" Ecological Risks at Orphaned & Abandoned Sites

The Lynn Lake case study

J.M. McKernan, D.B. Huebert W.J. deWit, J.L. Reidy, K.H. Mathers & D.E. Harron

> MEND Manitoba Workshop Challenges in Acidic Drainage for Operating, Closed or Abandoned Mines June 4 2008

Presentation Outline

- Acknowledgements
- Acid-Mine Drainage
- East Tailings Management Area, Lynn Lake, MB
- Site Challenges
- Regulatory Considerations
- Choosing Practical Performance Targets
- Elements for Site-Management Plan
- Approach to Defining "Real" Ecological Risk
- River Mixing-Zone Modeling to Define Exposure Zones

- Caged Clams in Ecological Risk Assessment
- Exposure-Dose Relationship for Copper in Clam Tissue
- Environmental Risk Thresholds (ERTs)
- Compliance of Water Quality with Site-Specific ERTs
- Relationship between TEL-Based ERTs and PEL-Based ERTs
- ERTs and Modeling to drive Mitigation Engineering
- Fish & Invertebrate Studies to define "River Health"
- Conclusions

Acknowledgments

Viridian Inc.

- Scott Sprague, P. Eng.
- Norman Brandson, P. Eng.

Province of Manitoba

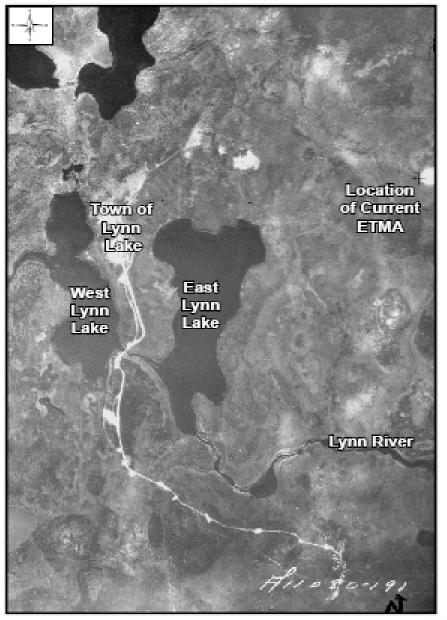
- Ernie Armitt, P. Eng. MB Mines Branch (MMB)
- Doina Priscu, P.Eng.- MB Mines Branch (MMB)
- David Green, B.Sc. MB Water Stewardship

Specialist Consultants

- Michael & Sandra Salazar Applied Biomonitoring
- Gordon Craig G.R. Craig & Associates
- ♦ Francois Gagne et al Env. Can. St. Lawrence Centre
- UMA/AECOM
 - Eric Blais, M.Sc.

Acid-Mine Drainage (AMD)

- Acidic water generated by weathering of iron & sulphurcontaining minerals that drains out of aboveground or underground coal & metal mines
- Impacts stream & river ecosystems by increasing acidity, depleting oxygen, & releasing heavy metals
- Can occur during mining operations or long after mine has been abandoned
- Over 135 AMD sites across Canada, with ~1.8 billion tonnes acidic tailings & 700 million tonnes acid waste rock raising serious concerns for water quality


Photo courtesy John

Charlton

East Tailings Management Area (ETMA), Lynn Lake, MB

- Mining/milling operations from 1953 - 1976
- ~20 M tonnes of tailings deposited over 250 ha ETMA; content dominated by residual sulphidebearing minerals"
- "End of the Road/dark side of the moon"

Lynn Lake - 1948

Lynn Lake - 1978

Aerial Photography of the Lynn Lake Area Illustrating Infilling of East Lynn Lake by WTMA Mining Activities

Site Challenges

- 1000+ years of heavy metal leachate predicted
- Runoff pH <4</p>
- Immediate proximity to Lynn River
- Runoff copper & nickel in mg/L range
- Some groundwater nickel concentrations exceeding 1000 mg/L
- No mining revenues to offset remediation costs

- Sparse local financial, material & labour resources
 - Limited seasonal air access; rail services rare
 - No tax base
- Requirement to protect opportunities for future tailings reprocessing or new developments

Regulatory Considerations

The ETMA is no longer 'Abandoned'

- Viridian & the Province of Manitoba have agreement to cost share site management/remediation
- Notwithstanding absence of active mine, Viridian & MMB may bear exposure under *Fisheries Act* Metal Mining Effluent Regulation ("MMER")
- Environment Canada increasingly concerned about historic provincial AMD sites
 - Lack of proactivity can result in imposed solution
 - MMB notified formally about federal concern in 2002
 - Joint Viridian/MMB actions since 2002 to mitigate historic AMD impacts

Choosing Practical Performance Targets

- In a 'dark side of the moon' circumstance like Lynn Lake, choice is between:
 - Attempting to consistently meet general water-quality guidelines (c/w 'safety factors')

or

- Seeking to meet intentions of *Fisheries Act* by reducing measured ecological risk
- Viridian/MMB adopted strategic approach to site management intended to protect aquatic biota and habitats, to enhance current state of fisheries
 - Adopted site-specific risk-based approach in 2002
 - Reflected in Site-Management Plan signed in 2007

Regulatory Considerations control

TetrES engaged since 2002 to:

- Identify aquatic biota at risk & general level of health of Lynn River
- Identify extent of chemical exposure risk
- Identify & evaluate extent of impacts to key biota
- Determine thresholds for impacts on key biota
- Determine site-specific performance targets for engineered mitigation works

Site-Management Plan is explicitly risk-based

 Seeks to promote healthy fishery by mitigating measurable risks to aquatic health

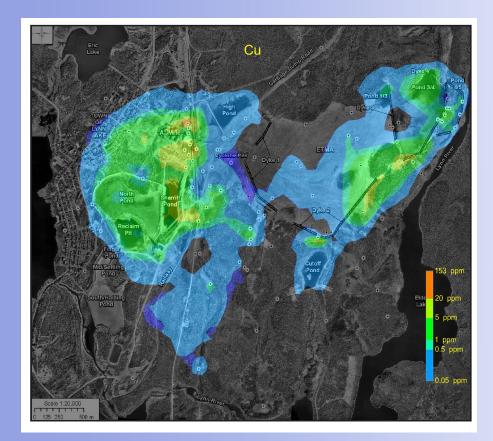
Elements of Site-Management Plan

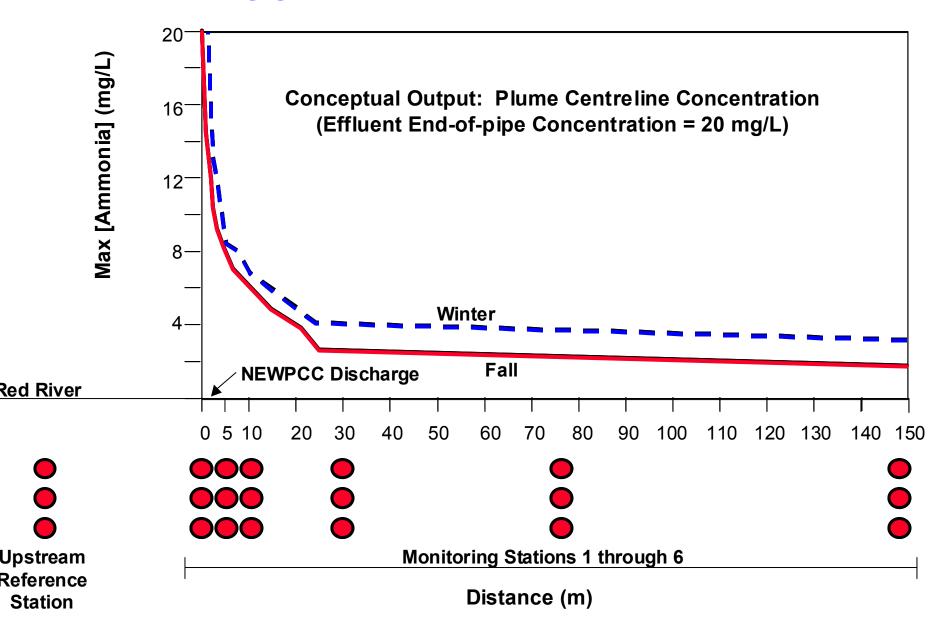
Surface treatment

- Surface runoff & river-mixing simulations, & data on sitespecific ecological impacts, identified best locations for capturing/treating contaminant loads
- Simulations identified possible performance targets for sitespecific surface-treatment options

Subsurface treatment

- Focused groundwater modeling supported runoff modeling, which simulated loads to receiving waters with & without subsurface-treatment options
- Column trials used to guide siting trial Permeable Reactive Barrier(s) ("PRBs")


Approach to Defining "Real" Ecological Risk


- Define "exposure zones" & areas of potential impacts in receiving water course(s)
 - Implement method that defines type, spatial & temporal distribution of ecological impacts
- Prioritize range of impact types identified & their distributions (i.e., define which impacts matter most to eliminate or to significantly reduce)
- Define extent of "biological health" in local reach Lynn River

River Mixing-Zone Modeling to Define Exposure Zones

- Mixing-zone model linked to groundwater model; used to estimate dispersal of pollutant loads from specific locations
 - Contaminant-transport groundwater model output provides "source" terms to mixing-zone modeling
- Mixing-zone modeling helped identify locations for *in situ* bioassays to define "real" ecological impacts

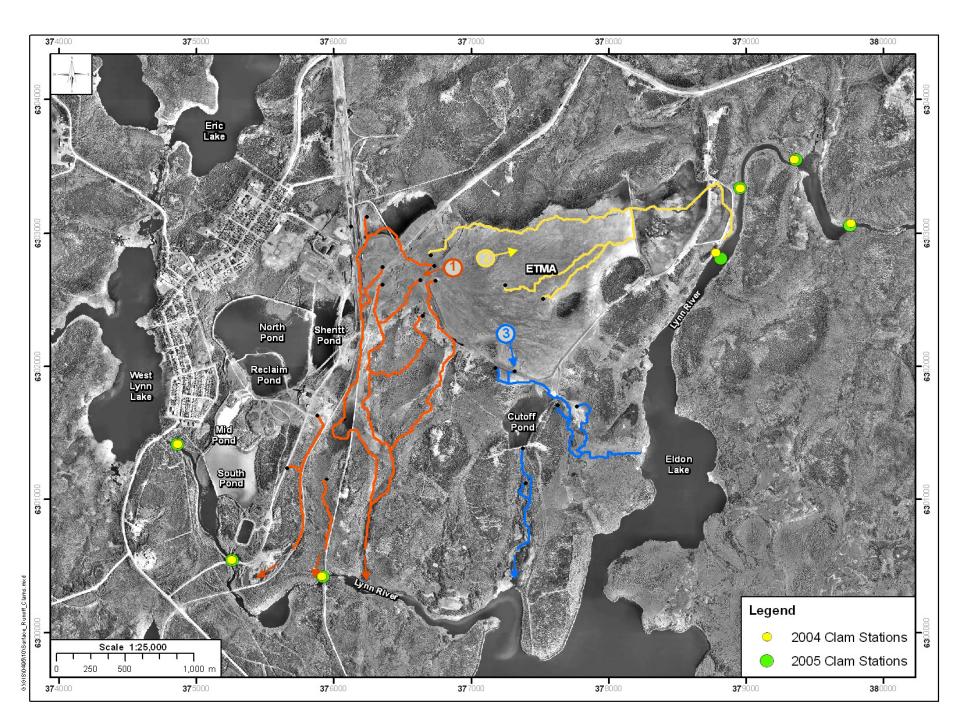
TetrES modeling identified caged mussel positions along a decreasing gradient of ammonia concentrations

TetrES modeling facilitated interpretation of exposure & effects data to account for temporal & spatial variability


Centreline for Q = 538 m³/s July 18, 1999

Original mussel sites

Centreline for Q = 286 m³/s August 5, 1999


Chier Peguis Bridge

North End Outfall

110 m

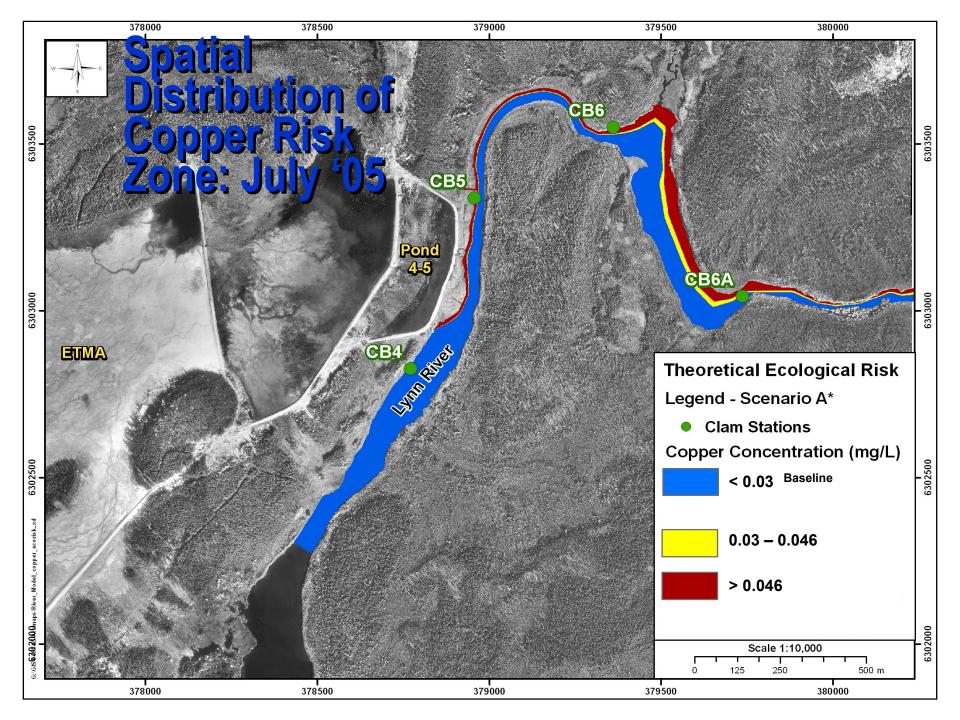
Ammonia Concentration

Caged Clams in Ecological Risk Assessment

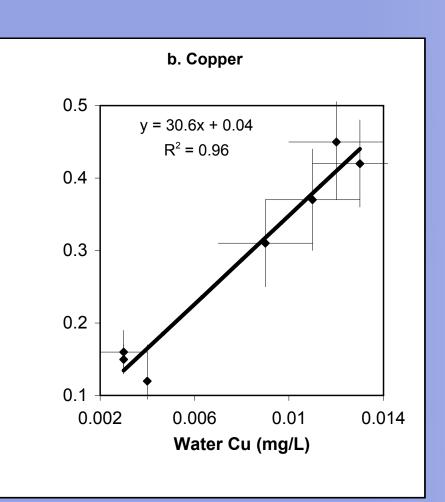
- Key tool is caged-mussel study
 - True measure of exposure
 - Sensitive measurement of effects
 - Accepted by ASTM, USEPA, EC (e.g., EEM)
- Caged-mussel studies are "data-rich"; substantial statistical power creates results credible to regulators
 - Both lethal (acute) & sublethal (chronic) effects can be identified; allows range of performance targets to be credibly identified
- Two deployment campaigns in 2004 ("normal" year) & 2005 (record "wet" year) conditions

Why Caged Clams??

- Best combination of longevity, complexity, immobility, & ability to concentrate chemicals in their tissues; e.g.
 - Don't move (fish do)
 - Longer-lived than most fish
 - Accumulate metals from filtering water
 - Most cost-effective type of individual end-point measurement (more bang for buck)
 - Meaningful ecological niche
 - Only biological exposure system that is practical, fully replicated & statistically robust


Solutions for a Sustainable Environment

Key Findings from *in-situ* Bioassays



- Impacts confined almost exclusively to sublethal endpoints
 - Almost no lethality
 - No measurable inhibition of growth
- Impacts confined to area downstream of ETMA
- Metal whose river concentrations are closest to reported injury thresholds was copper (but no dose-response data for Ni, Zn or Al in mussels)
- Combination of mixing-zone modeling, caged-clam exposures, tissue-chemistry analyses & determination of free-ion ratios resulted in ability to calculate "Environmental Risk Thresholds"
 - Derivation of values for nickel, zinc & aluminum based on calculation for copper using Biotic Ligand Model

Exposure-Dose Relationship for Copper in Clam Tissue

- Significant linear relationship between environmental exposure (4yr dataset) & dose (combined 2-yr dataset)
- Threshold Effect Level (TEL) for internal copper (~30 mg/kg dw) reached at riverdissolved concentration of 0.014 mg/L
 - ERT of 14 ug/L is ~50% more stringent than 0.03 mg/L value calculated from 1-yr dataset
- Copper ERT (14 ug/L) yields a free-ion Cu concentration of 0.85 ug/L

Calculated Environmental Risk Thresholds (ERTs)

Metal	Log Kgill ¹	Relative Toxicity ²	Free ion ratio ³	Environmental Risk Threshold ⁴	Toxic	Site-Specific MWQSOG (mg/L diss.)
Cu	7.4-8.0	1	0.06	0.014	Y/N	0.001 to 0.008
AI	5.9-6.5	10-70	0.0002	30-300	N	0.005 to 0.100
Ni	4.0-5.0	100-3000	0.7	0.2-4	Y/N	0.009 to 0.049
Zn	5.3-5.6	40-200	0.6	0.05-0.3	Y/N	0.019 to 0.111
Cd	7.0-8.6	0.1-10	0.7	0.0001-0.009	N	

- Site-specific copper ERT calculated directly from doseresponse dataset
- Log Kgill based on biotic ligand model relationships for standard test-fish species
- Relative toxicity calculated from LogKgill linear relationship to toxicity
- Site-specific ERT for aluminum, nickel & zinc calculated as; [Cu_{free}] x Relative Toxicity/Free Ion Ratio
 - No MWQSOG calculated for Cd, as generally < detection limit

Calculated ERTs control

Ratio between ERT and MWQ based on TEL and PEL for Clams

Metal	TEL*	PEL*
Copper (Cu)	2 to 14	4 to 40
Aluminium (Al)	300 to 6x10 ⁴	750 to 2x10 ⁵
Aluminium (Al) pH 5.0	2 to 400	5 to 1200
Nickel (Ni)	4 to 400	10 to 1300
Zinc (Zn)	0.5 to 16	1 to 50

*TEL refers to toxicity estimates that are based on the Threshold Effects Level for clams. PEL refers to toxicity estimates that are based on the Probable Effects Level for clams.

- Relationship of ERTs to MWQSOGs generally >1 (i.e., regulatory values not appropriate for guiding practical remediation at this site; overprotective)
- Exception to this pattern is lower ERT limit for Zn (which is slightly < than upper MWQSOG)

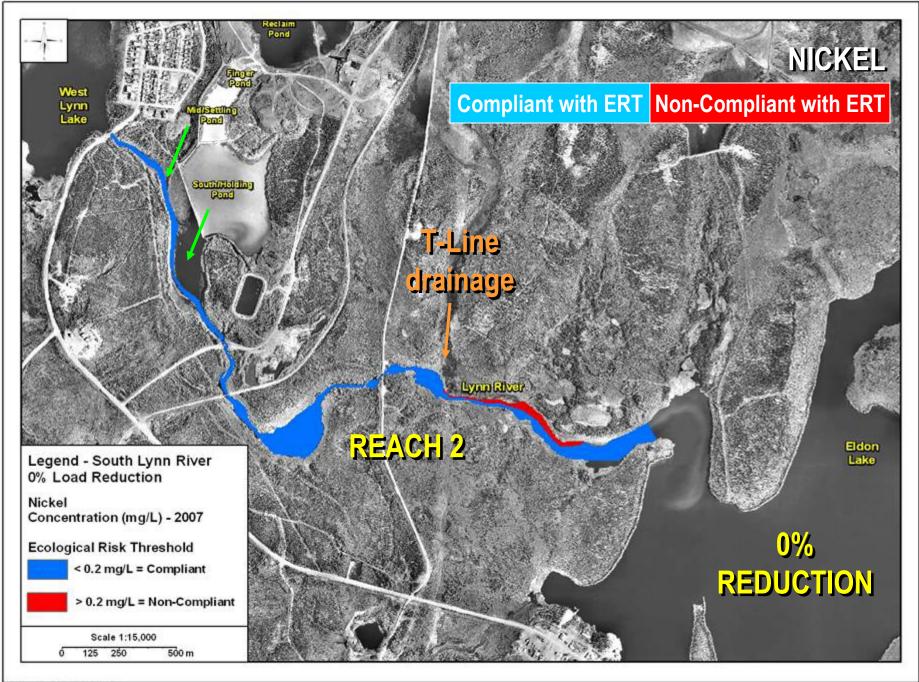
Compliance of Water Quality with Site-Specific ERTs

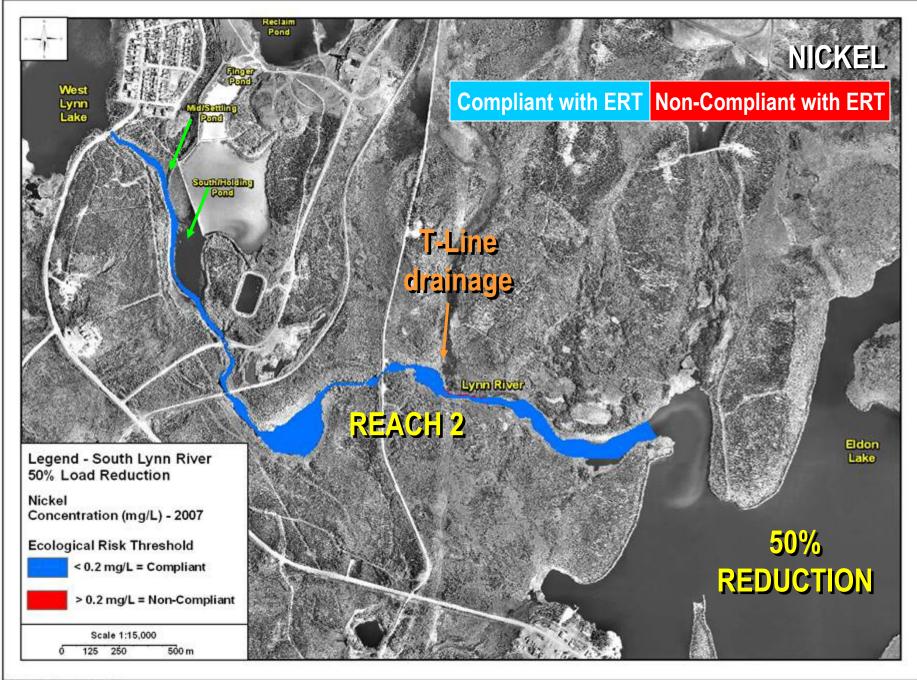
	EDT		NA L'		
Metal	ERT	Mean	Median	75%	High Value
Al*	30	+	+	+	+
	300	+	+	+	+
Cu	0.014	+	+	+	-
Ni	0.2	-	+	+	-
	4	+	+	+	+
Zn	0.05	-	-	-	-
	3	+	+	÷	+

- Aluminum values uncertain due to considerable extrapolation required for calculation
- Copper concentrations exceeded the ERT at the highest values observed
- Nickel concentrations were intermittently above the lower limit ERT, but not the upper limit
- Zinc concentrations were consistently above the lower ERT, but did not exceed the upper ERT limit

RELATIONSHIP BETWEEN TEL-BASED ERTs & PEL-BASED ERTs

Solutions for a Sustainabl


- TEL is level of copper tissue burden at which effects begin to be expressed
- Literature suggests that Probable Effects Level (PEL) for copper 3x higher than TEL
- Basing calculation of ERTs on TELs, rather than PELs, is very conservative (comparable to using LOEC instead of EC50)
- Using TEL-based ERTs as input to engineering design means that engineered mitigations could be over-designed (i.e. highly protective of river biota)

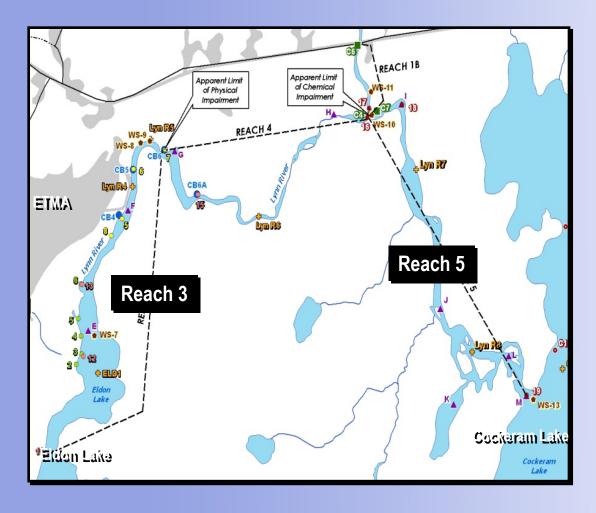

USING RIVER MODELING & ERTS TO SUPPORT MITIGATION ENGINEERING

 ERTs defined 'performance targets' for engineering solutions

Solutions for a Sustainabl

- Mixing-zone modeling able to simulate different degrees of performance needed to mitigate real ecological impacts
- Extent of necessary reduction in river 'impact zones' now known
- TEL-based ERTs, and impact-zone-reduction targets, now key input to engineering design processes able to protect river biota

Load-Reduction Estimates calculated from ERTs & Mixing-Zone Modeling



2005, 2006, 2007 Load Reduction Estimates Using 2007 ERT Limits				
METAL	REACH	2005	2006	2007
Aluminum	Reach 2	0%	0%	0%
Alummum	Reach 3	0%	0%	0%
Copper	Reach 2	0%	30%	0%
Copper	Reach 3	0%	0%	0%
Nickel	Reach 2	0%	75%	50%
INICKCI	Reach 3	0%	0%	0%
	Reach 2	50% 55%	85%	60%
Zinc	Reach 3	or 0%	0%	0%

State of River Health

Studies begun in 2007 examined species composition, species richness & other indicators of ecological health in local reaches of Lynn River

State of River Health (Comited)

- Fish netted near
 ETMA were
 healthy, "typicaL'
 for area, with
 Condition Factors
 unchanged since
 last studies 30 yrs
 ago
- Invertebrates
 displayed
 abundance,
 composition and
 richness
 unaffected by
 metal exposures
- Piscivorous birds present, healthy

Conclusions

 Caged-clam bioassays critical to creating site-specific environmental risk threshold values

- Key benefit of using mussels was availability of TEL ("dose") data for copper
- ERTs critical to defining minimum acceptable water chemistry ("performance targets" at edge of (provincial) mixing zones for effluent from final tailings pond
- ERTs are key input to design-engineering processes focussing on surface (& subsurface) treatment of contamination along major flow paths
- TEL-based ERTs & related engineering solutions should greatly minimize risks to aquatic biota
- Fish and invert studies demonstrated study area river and lakes to be surprisingly healthy
- Time is available to fashion locally appropriate engineering solutions targeted on reducing measurable ecological risk

QUESTIONS?