

Convective Flow Monitoring and the Influence of Cover Material

Phillip, Hockley, Dawson, Kuit

BC MEND ARD/ML WORKSHOP Soil, Geomembrane and Non-Traditional Dry Covers

Vancouver, B.C. December 2-3, 2009

O'Kane Consultants

Integrated Geotechnical Engineering Services Specialists in Unsaturated Zone Hydrology

Technical Panel

- Technical Panel formed to investigate the incident and generate lessons for industry
- Kim Bellefontaine
- Ricci Berdusco
- Bruce Dawson
- Daryl Hockley
- Al Hoffman
- Diane Howe
- Walter Kuit

- Dr. John Meech
- Mike O'Kane
- Clem Pelletier
- Mark Phillip
- Andy Robertson
- Dr. Ward Wilson

U.B.C.

MEMPR and Consultant

Teck and Consultants

Independent

Presentation Outline

- Project Background
- Gas Trap and Convective Flux Measurements
- Premature Snowmelt Area Characterization
- Convective Flux and Gas Composition Changes
- Conclusions

Sullivan Mine Incident

http://www.mediaroom.gov.bc.ca/ sullivan_mine/sullivan_mine.htm

Premature Snowmelt Areas (PSAs)

PSAs and Vents

Surface Pore Gas Vent Survey

- Understand magnitude of pore gas venting
- Gas Traps placed on surface of dumps
 - Jan 2009 (18 North, South & No. 1 Dumps)
 - Feb 2009 (20 No. 1 Dump)
 - April 2009 (20 No. 1 Dump)

4 Gas Trap Classes

- Control
- Normal
- Biased
- Uber-biased

Gas Trap Assumptions & Design

- Gas trap acts as a Continuously Stirred Tank Reactor.
- The initial gas composition measured is the composition of the pore gas entering the gas trap over the test period.

Gas Flux Test Results

Flux Results at Toe

Flux at Crest

Spring Cover Conditions – 5 cm

Gas Flux Bag Tests

CSTR vs. Bag Test Flux Results

PSA Characterization Effort

- Excavations to waste rock
- Temperature
- Moisture Content
- PSD
- Density
- Thickness

Soil Temperature

Particle Size Distribution

Moisture

- Little difference in moisture content between PSA and non-PSA
- Difference existed between locations on a flat surface (greater moisture content) and those on a slope

Gas Test Flux Results

Additional Cover Flux Change

BH-3B Gas Composition

BH-3B Gas Composition Pattern

BH-3B Gas Composition

P-06 Gas Composition

Oxygen composition normally elevated fall to spring.

Oxygen composition has dropped fall 2009.

BH-1A Gas Composition

BH-1A Gas Composition

BH-1A Gas Composition

Oxygen reduction site-wide

Conclusions

- Gas traps have been useful tool to measure convective flux
- Measurement of convective flux at both toe and crest have provided an additional confirmation of air flow system
- Waste rock likely has greatest link to PSAs
- Vents linked to thin cover
- Cover construction quality control is important, but sites surveys and observations are helpful

Conclusions

- Additional cover has reduced pore gas flux by an order of magnitude
- Effect of the additional cover appears to nearly site wide
- No conclusions on long-term cover performance with respect to air flow

