Evolution of Soil Hydraulic Properties in Dry Covers: Lessons Learned from the Alternative Cover Assessment Program (ACAP)

Craig H. Benson, PhD, PE, DGE Wisconsin Distinguished Professor and Chair Geological Engineering University of Wisconsin-Madison ______chbenson@wisc.edu

23 February 2009

ACAP Objectives

- Collect field-scale hydrology data for conventional and water balance (*aka* store & release, or S&R) covers for broad range of climates and conditions.
- 2. Evaluate & develop design methods for S&R covers.
- 3. Evaluate numerical models and develop modeling strategies.
- 4. Develop design guidance and provide technology transfer on S&R cover design and construction.

10 yr and \$10M later, mission (mostly) accomplished.

ACAP Network of Final Cover Test Sections

12 Sites, 8 States, 28 Test Sections

Covers designed to transmit < 3, 10, or 30 mm/yr depending conventional cover required by regulation.

Site Characteristics

Site Location	Elev. (m)	Annual Precip. (mm)	Annual Snowfall (mm)	Annual P/PET	Climate	Monthly Avg. Air Temp.
Apple Valley, CA	898	119	38	0.06	arid	-1, 37
Boardman, OR	95	225	185	0.23	semi-arid	-2, 32
Helena, MT	15	312	1288	0.44	semi-arid	-11, 28
Altamont, CA	227	358	2	0.31	semi-arid	2, 32
Monticello, UT	1204	385	1498	0.34	semi-arid	-9, 29
Sacramento, CA	320	434	0	0.33	semi-arid	3, 34
Underwood, ND	622	442	813	0.47 semi-arid		-19, 28
Marina, CA	31	466	0	0.46	semi-arid	6, 22
Polson, MT	892	380	648	0.58	sub-humid	-7 ,28
Omaha, NB	378	760	711	0.64	sub-humid	-6, 25
Cedar Rapids, IA	290	915	724	1.03	humid	-8, 23
Albany, GA	60	1263	3	1.10	humid	8, 33

Conventional Covers Evaluated by ACAP

Store & Release Covers Evaluated by ACAP

Helena, MT	Polson, MT	Boardman, OR	Altamont, CA	Apple Valley, CA	Monticello UT	o, Marina, CA	Albany, GA	Marion, IA	Omaha, NE	Sacramento, CA	
											0 mm 300 600 900 1200 1500 1800
		Comp	ost / Soil Mix		1000 2010 2010 2010	Soil-Gravel Ad	mixture				- 2100
		— 🕅 Topsc	bil		00000 00000 000000	Gravel					- 2400
		— Storag	ge Layer			Clean Sand					- 2700 -
		Comp	acted Vegetat	ive Cover		Silty Sand					- 3000
		Interim Cover				Vegetation (Hy a grass unders Vegetation (Gr	vbrid-Poplar T story) rasses, forbs,	rees with and shrubs)			6

Typical Lysimeter Cross-Section

Aerial view of completed test sections at Kiefer Landfill, Sacramento County, California.

Kiefer Landfill Test Sections - In Service

ACAP field sites monitored 1999-2005 (one still being monitored).

S&R Cover in Sacramento, California

Predicting the Future

- How do engineering properties of soils change over time?
- How does the vegetation community change over time and how does this affect hydrology?
- Can we predict how changes in soils and vegetation affect performance over time?

ACAP Exhumation Study

• Elements

- Field testing of hydraulic properties of cover materials
- Collect large-scale undisturbed samples for lab analysis
- Collect geosynthetic materials (geomembranes, geocomposite drainage materials, GCLs) for lab analysis
- Geomorphological surveys
- Objectives
 - Identify changes in engineering properties
 - Relate changes in properties to structural development
 - Identify how changes in properties affect performance
 - Recommend monitoring strategies to detect changes in performance

Barrier System Elements

- Earthen components
 - Store-and-release layers: saturated and unsaturated hydraulic properties

- Hydraulic barrier layers (clays and geosynthetic clay liners, GCLs): saturated hydraulic conductivity
- Geosynthetic components
 - Geocomposite drainage layers: transmissivity, permittivity
 - Geomembranes: integrity
 - Geosynthetic clay liners: sat. hydraulic conductivity

Field Tests – Sat. Hydraulic Conductivity

SDRI: large infiltration test with careful control on mass

TSB: falling or constant head test in cased borehole

SDRI Being Installed – Iowa Site

SDRI Being Operated – Iowa Site

TSB Being Installed and Operated – Utah Site

Collecting Block Sample

Laboratory Testing – Saturated and Unsaturated Hydraulic Properties

- Collect large-scale (400 mm diameter) undisturbed samples from field for characterizing hydraulic properties.
- Saturated hydraulic conductivity (K_s) measured at different scales.
- Soil water characteristic curve (SWCC) measured at different scales (water content vs. water potential).

Preparing Blocks for Hydraulic Properties Tests

Block sample

Trimming roughly to take ring-off

Placing the block sample

Trimming to the pedestal size

Changes in Sat. Hydraulic Conductivity

If *no* change, data would scatter around 1:1 line

Data coalesce into band with K_s = 10⁻⁷ - 10⁻⁵ m/s independent of initial K^s

Effect of Climate

Influence of Soil Composition

Soils with lower clay fraction more resilient Fine-grained soils with greater silt fraction more resilient

Influence of Placement Condition

Dry Unit Weight

Water Content

Denser soils less resilient ... nature loosens dense soils Wetter soils are less resilient ... nature adds structure

Scale Effect in K_s - Caused by Structure

Caisson Lysimeters – Monticello, UT

0.3 m Cobble & Soil

0.3 m Sand

0.3 m Clay Radon

Eric MacDonald

Radon Barrier – Monticello, UT

Roots seek out water in wet finegrained soils, e.g., clay radon barriers, even at 1.6-1.9 m depth

Scaling - Implications for Evaluation

Field K_s can be 10-1000 times *higher* than K_s from lab test on specimen from sampling tube.

Assessment of inservice conditions based on samples collected in sampling tubes will be *misleading*.

Soil-Water Characteristic Curves

t_o: initial condition after t_p: pedogenesis Structure formed by pedogenesis expected to increase q_s, increase a $(lower y_a), \&$ decrease n.

Changes to the SWCC Due to Structure

Formation of larger pores in soil structure results in lower air entry pressure (higher α) and broader pore size distribution (lower n) ... net result is lower water retention. Looser soils (higher initial a and lower initial n) resilient.

Effect of Specimen Size on SWCC

Air entry suction decreases (α increases) with test size

n unaffected by test size

Larger specimens contain more structure and larger pores.

Lessons Learned

- Nature alters engineered condition in short period: dense soils become looser and unstructured soils gain structure.
- Hydraulic properties of engineered fine-textured soils become similar over time, regardless of initial condition or climate. Use these longer term properties for design and modeling.
- Recognize that soil properties will change and construct covers to mimic the longer term condition.
- Chose soils with lower clay content if possible to ensure greater resiliency.

Challenges – Predicting the Future

Engineering Property

Forthcoming Products

- USEPA Guidance Document on S&R covers (Region 8 sponsorship).
- Book by ASCE press.
- Webinar series as follow-on to ACAP technology transfer workshops.

Thank you to co-PI Bill Albright of Desert Research Institute in Reno, NV.

Research Sponsors

- US Environmental Protection Agency
- US National Science Foundation
- US Nuclear Regulatory Commission
- US Department of Energy
- Environmental Research and Education Foundation
- Industry partners (Veolia Environmental Services, Waste Management, Waste Connections, CETCO)
- Wisconsin Distinguished Professorship