# A Review of Performance of the Whistle Mine Backfilled Pit Cover System – Four Years after Construction

By: B. Ayres, P.Eng. – O'Kane Consultants L. Lanteigne, P.Eng. – Vale Inco M. O'Kane, P.Eng. – O'Kane Consultants

> 16<sup>th</sup> Annual BC / MEND ML / ARD Workshop December 2-3, 2009 Vancouver, BC

> > O'Kane Consultants Integrated Geotechnical Engineering Services Specialists in Unsaturated Zone Hydrology

#### Presentation Outline



- Background
- Cover System
  Design Approach
- Cover and Landform Design Modelling
- Sustainability of the Cover and Final Landform
- Construction of the Pit Cover
- Performance of the Pit Cover
- Concluding Remarks

## Background



- Site ~ 60 km NW of Sudbury
- Canadian Shield numerous bedrock outcrops and lakes
- Open pit mining (nickel) between 1988-91 & 1994-98
- 6.4 Mt of waste rock on surface – 80% is mafic norite, avg. S of 3%
- Several acidic seeps developed
- Semi-humid climate annual precip. of 900 mm (30% as snow) & potential evaporation of 520 mm

## Background (cont')



- Not feasible to reclaim WRDs in-place
- Based on available data, Inco decided to relocate all waste rock to open pit (with lime addition @ 2kg/tonne) & construct an engineered cover system

-7H-1

- Pit surface area ~ 10 ha
- Objectives of the pit cover:
  - 1) Limit oxygen ingress!!
  - 2) Reduce meteoric water infiltration
  - 3) Growth medium for vegetation

#### Cover System Design Approach



#### Preliminary Cover Design Modelling

| Barrier Layer<br>Thickness | Growth Medium<br>Layer Thickness | Simulation         | Barrier Layer<br>Deg of Saturation |
|----------------------------|----------------------------------|--------------------|------------------------------------|
| 30 cm                      | 90 cm                            | Initial conditions | 90%                                |
|                            |                                  | Dry year – run 1   | 78%                                |
| 45 cm                      | 90 cm                            | Initial conditions | 92%                                |
|                            |                                  | Dry year – run 1   | 82%                                |
| 60 cm                      | 90 cm                            | Initial conditions | 93%                                |
|                            |                                  | Dry year – run 1   | 85%                                |
|                            |                                  | Dry year – run 2   | 78%                                |
| 30 cm                      | 120 cm                           | Initial conditions | 93%                                |
|                            |                                  | Dry year – run 1   | 83%                                |
|                            |                                  | Initial conditions | 98%                                |
| 45 cm                      | 120 cm                           | Dry year – run 1   | 94%                                |
|                            |                                  | Dry year – run 2   | 90%                                |
|                            |                                  | Dry year – run 3   | 86%                                |

#### Detailed Cover Design Modelling

#### 2-D Cover System Performance



#### Detailed Cover Design Modelling



Detailed Cover Design Modelling



# Preferred Cover System Design



# - Original Landform Design /// Original Landform Design



#### Original Landform Design – Output from the SIBERIA Model (after 100 yrs)



### Preferred Final Landform Design



#### Sustainable Cover Performance



#### (Adapted from INAP, 2003)

#### Design Elements Addressing Issue of Sustainable Performance

- Erosion control measures
- Revegetation plan
- Growth medium layer
  - Competent material
  - Thickness!
- Barrier layer
- Geotextile



• Performance monitoring system

### Key Construction Activities



• Started May 2004



#### Key Construction Activities (cont')



November 2005

# **Pit Cover – 2006**



#### **Pit Cover – 2009**



# Cover Performance Monitoring



- Secondary in situ cover monitoring sites (x 13) (portable soil w/c probe & O<sub>2</sub> / CO<sub>2</sub> gas analyzer)
- Groundwater monitoring wells
- Surface runoff (automated weirs)
- Meteorological monitoring

- Primary in situ cover monitoring sites (x 2):
  - Automated
  - Net percolation
  - Suction / water content
  - Temperature
  - O<sub>2</sub> / CO<sub>2</sub> (manual)





### Water Content Profiles Measured in 2008



#### Degrees of Saturation for the Pit Cover Barrier Layer



#### **Pit Cover Water Balance**

|                         | 2006          |                                         | 2007          |                                         |
|-------------------------|---------------|-----------------------------------------|---------------|-----------------------------------------|
|                         | Value<br>(mm) | Percentage of<br>Total<br>Precipitation | Value<br>(mm) | Percentage of<br>Total<br>Precipitation |
| Precipitation           | 765           | -                                       | 584           | -                                       |
| Runoff and<br>interflow | 475           | 62.1%                                   | 228           | 39.0%                                   |
| Evapotranspiration      | 269           | 35.2%                                   | 332           | <b>56.8%</b>                            |
| Net percolation         | 21            | 2.7%                                    | 16            | 2.7%                                    |
| Change in storage       | 0             | 0                                       | 9             | 1.5%                                    |

• Net percolation measured in 2008 was 11 mm or 1% of precipitation

#### Soil Temperature Contours - 2008



#### **EVOLUTION OF PIT Water Quality**



# Concluding Remarks

- Pit cover performing as expected ...
  - Growth medium for a variety of local plant species
  - Minimal soil erosion ... stable landform
  - *H*<sub>2</sub>O and O<sub>2</sub> ingress substantially reduced since 2005
- Final landform analogous to a natural system ... will aid in the sustainability of the pit cover
- Quality of site runoff and pit overflow waters improving with time

### Concluding Remarks

 Ultimately decommission collection ponds, batch treat pit overflow water



### Concluding Remarks

• 2009 recipient of the Tom Peters Memorial Mine Reclamation Award (CLRA)



