The Rehabilitation of The Kam Kotia Mine Site:

An Exercise in Cover Construction and Water Management

Christopher D. Hamblin

Project Coordinator Abandoned Mines Rehabilitation Fund Ministry of Northern Development, Mines & Forestry Ontario, Canada

🗑 Ontario

MNDMF

Background Information

- Kam Kotia is a former Cu/Zn mine near Timmins, Ontario
- There are about 6 million tonnes of unmanaged acid generating tailings originally covering more than 500 ha
- Environmental impacts are locally significant
 - acidic metal leachate aesthetics
 - dusting physical safety
- Principle exploration: 1926-1928 exploration shaft
- Mining *: 1943-1944 169,000 tonnes open pit

Ontario

- Mining: 1961-1972 5,840,000 tonnes, mainly underground
- Production 6.6 MT @ 1.1% Cu, 1.17% Zn, 0.10 oz/Ag
 - * Mining in 1943-1944 carried out on behalf of Wartime Metals Corporation, a Federal Government Agency. Cu sold to Metals Reserve Company, Washington, which paid operating costs and royalty.

NORTH IMPOUNDED TAILINGS (NJT)

SOUTH UNIMPOUNDED TAILINGS (SUT)

HIGHMAY 576.

12

KAM KOTIA PLANT SITE NORTH UNIMPOUNDED TAILINGS (NUT)

ACCESS ROAD

The mine plant area. 17-1

The Rehabilitation of Kam Kotia

- A five phased approach to conduct the rehabilitation of the Kam Kotia Mine site was developed in 2000
- The first phase of rehabilitation work began in 2001

ntario

- Currently, more than 80% of the required measures have been completed, at a cost of approximately \$53 million
- It is expected that all rehabilitation will be completed by 2011
- The final cost of rehabilitation is expected to be ~ \$62 million
- It is predicted that the Lime Treatment Plant will need to operate for an estimated 50 years after the completion of all rehabilitation on the site (i.e. three flushings of groundwater)

NORTH IMPOUNDED TAILINGS

Carrier Carrow

LIME PLANT

FORMER SOUTH UNIMPOUNDED TAILINGS MINE SITE
> FORMER NORTH UNIMPOUNDED TAILINGS

June 2003

The Construction of the NIT Cover

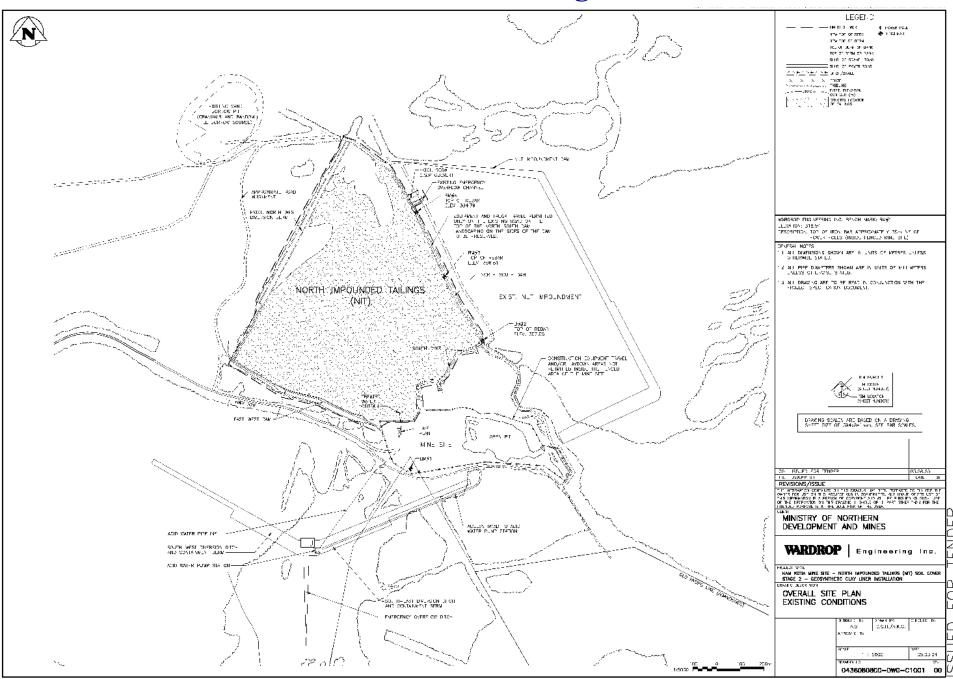
😵 Ontario

MNDMF

The NIT area prior to rehabilitation

thhommon

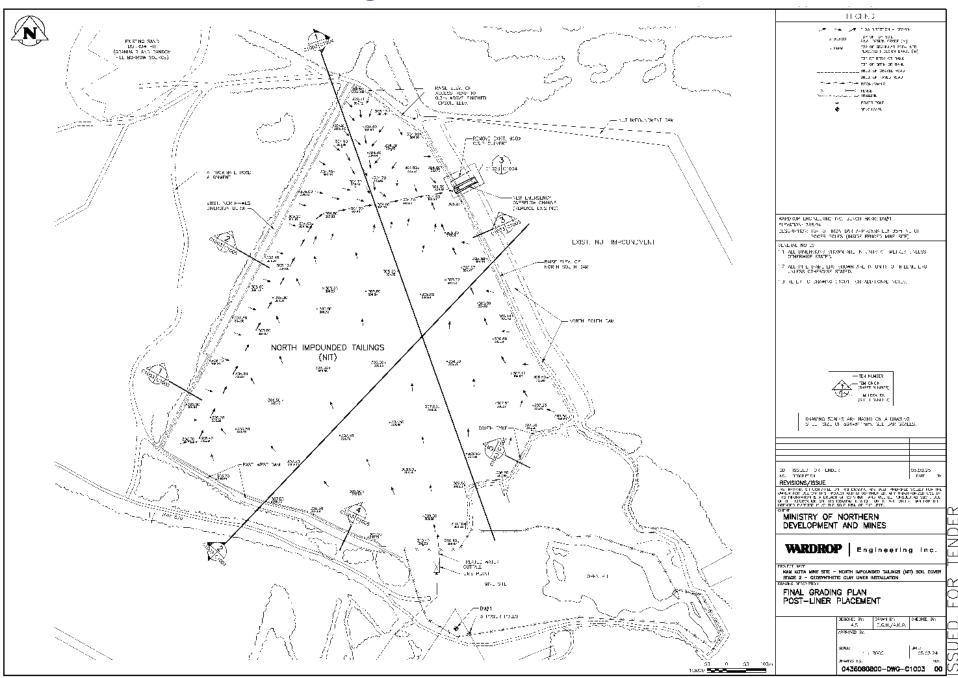
The NIT area on a windy day, Summer 2001 TT

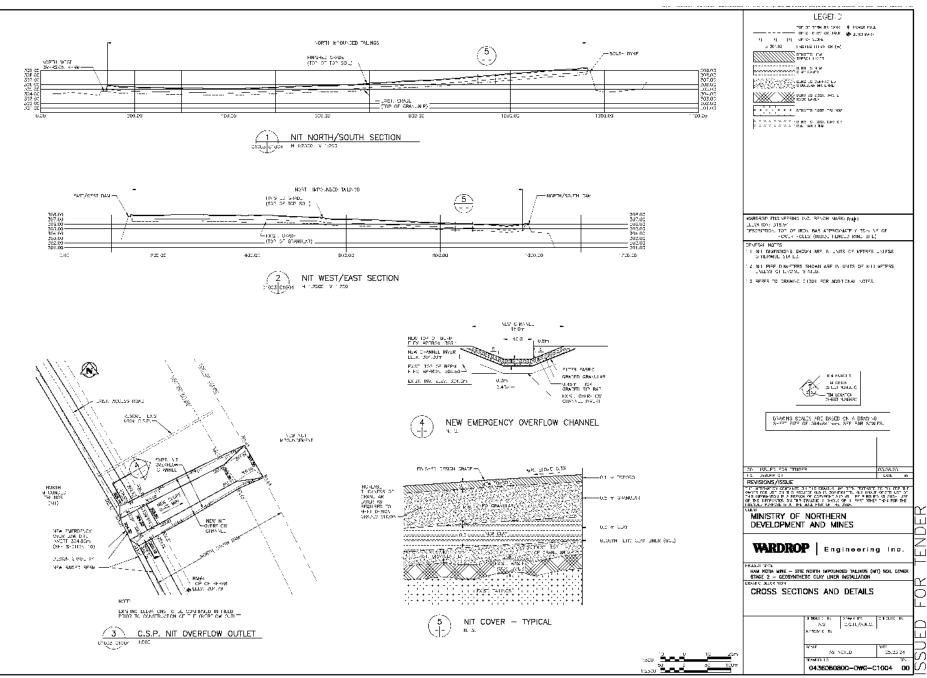

The NIT Cover

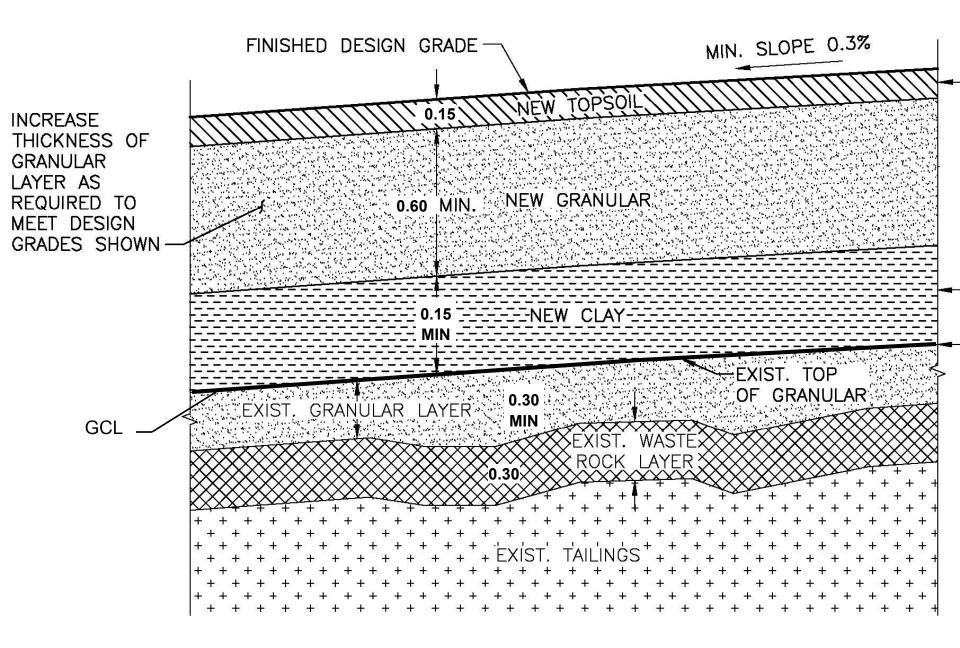
- Due to their higher elevation, it was determined that the most appropriate rehabilitation measure for the NIT area would be a multi-layered, "dry", engineered cover.
- The engineering design was developed in 2004-06.


ntario

- The first two layers (i.e. the Capillary Break) was constructed in the winter of 2004/05.
- The remainder of the cover construction began in late 2006 and was completed by October 2008.
- The NIT is almost 80 ha in area and the rehabilitation cost was approximately \$16.5 million
 - i.e. at a cost of more than \$200,000 per hectare


Overall Site Plan – Existing Conditions


Grading Plan – Pre-Liner Placement


Final Grading Plan – Post-Liner Placement

Cross Sections and Details

Cover Design – Cross Section

The Construction of the NIT Cover Capillary Break

Winter 2004/05

(Ontario

MNDMF

Layer 1: Crushed Waste Rock

Layer 1: Crushed Waste Rock

Layer 1: Crushed Waste Rock

Layer 2: Granular B

Layer 2: Granular B

The Completion of the NIT Cover

2006 - 2008

🕅 Ontario

MNDMF

GCL Specifications

Table 1 – GCL Physical Properties			
GEOTEXTILE PROPERTIES	TEST METHOD	MINIMUM TEST FREQUENCY	VALUE
Cap Non-woven Mass/Unit Area	ASTM D 5261	1/20,000 sq. m	200 g / m² MARV
Woven Scrim Mass/Unit Area	ASTM D 5251	1/20,000 sq. m	los g/m [*] MARV
Polypropylene			
membrane applied to			
the woven fabric			
		DNITE PROPERTIE	
Swell Index	ASTM D 5890	1/50,000 kg	24 ml/2g min.
Moisture Content	ASTM D 4643	1/50,000 kg	12%max.
Fhuid Loss	ASTM D 5891	1/50,000 kg	18 mlmax.
FINISHED GCL PROPERTIES			
Bertonite Mass Per Unit Area ¹²	ASTM D 5993	$1/4,000 \mathrm{m}^2$	366 kg/m [/] MARV
Grab Strength [®]	ASTM D 4632	$1/4,000{ m m}^2$	422 N MARV
Grab Elongation	ASTM D 4632	$1/4,000{ m m}^2$	150 %Typical
$PeelStrength^4$	ASTM D 4632	$1/4,000{ m m}^2$	66 N
Permeability	ASTM D 5084	1/10,000 m ²	S x 10 ⁴⁰ cm/sec max S x 10 ⁴⁰ cm/sec E96
Index Fhix [®]	ASTM D 5887	17Week	5 x 10 m /m /sec
Internal Shear Strength®	ASTM D 6243	Periodic	24 kPa
DIMENSIONS			
Width x Length	nominal	Every Roll	4.7 x 45.72 m
Areaper Roll	nominal	Every Roll	216 m
Packaged Weight	typical	Every Roll	980 kg

MNDMF

Ontario

Layer 3: Surface Prep

BCMAG

Layer 3: GCL Arriving

Layer 3: GCL Installation

Layer 3: GCL Installation

Layer 3: GCL Installation

Layer 4: Clay

Layer 4: Clay

Layer 5: Granular B

.....

Layer 5: Granular B

Stockpiled Clay for Slope Completion

Layer 6: Topsoil & Vegetation

+ attaged of another

VOLVO B

Layer 6: Topsoil & Vegetation

Layer 6: Topsoil & Vegetation

MNDMF

🗑 Ontario

The NIT area, 2001

所有

Conclusions

😵 Ontario

MNDMF

Construction Material Quantities

	Waste Rock (m ³)	Clay (m³)	Granular (m³)	GCL (m²)
2005	268,000		300,000	
2006		92,864	129,149	775,888
2007		161,148	314,007	
2008			122,636	
TOTAL	268,000	254,012	865,792	775,888

The NIT Cover is comprised of:

- almost 1.4 million m³ of aggregate materials, and
- almost 78 hectares of GCL

Ontario

NIT Cover Issues and Resolutions

- Water management
 - Greater than predicted volumes of ground water,
 - -Resulted in unexpected repair time and additional costs.

🐨 Ontario

MNDMF

Water Issues

Antis Million Bearling at Million (1)

Water Issues

NIT Cover Issues and Resolutions

- Water management
 - Greater than predicted volumes of ground water,
 Resulted in unexpected repair time and additional costs.
 - Relocation of Treatment Plant effluent discharge line,
 - -Caused challenges for both the NIT Cover Project and the Treatment Plant operation.
 - -Resulted in break-downs and additional costs.

😵 Ontario

MNDMF

Water Issues

NIT Cover Issues and Resolutions (cont'd)

Mineral Development & Lands Branch

Complications in keying-in the slopes

 Additional engineering needed,
 Resulted in additional costs and time.

MNDMF

Ontario

Keying-in the GCL edge

NIT Cover Issues and Resolutions (cont'd)

Complications in keying-in the slopes

 Additional engineering needed,
 Resulted in additional costs and time.

- Access vs. seasonal conditions
 - Must carefully plan and sequence all components of project,
 - -Otherwise delays and additional costs.

MNDMF

If you ever undertake a large, multi-phased project....

Ensure detailed communication between all of the Contractors and/or Consultants of the various work components and phases.

🕅 Ontario

MNDMF

Thank You

Christopher D. Hamblin

Project Coordinator Abandoned Mines Rehabilitation Fund Ministry of Northern Development, Mines & Forestry Ontario, Canada

🐨 Ontario

MNDMF