Characterization of ARD Neutralization Sludge: Links between ARD Influent Chemistry, Treatment Process and Sludge Composition.

Alan J. Martin, Lorax Environmental Services Ltd. Skya Fawcett, Lorax Environmental Services Ltd. Andrew Rollo, Canadian Environmental Assessment Agency Diana Loomer, University of New Brunswick Tom AI, University of New Brunswick

ACKNOWLEDGEMENTS

Funded provided by the Natural Resources Canada (NRCAN) and the Mine Environment Neutral Drainage (MEND) program. Industrial Funding:

- Goldcorp Canada Equity Mine (BC)
- Xstrata Zinc– Geco Mine (ON) and Brunswick Mine (NB)
- EPCOR Britannia Mine (BC)
- Inmet Samatosum Mine (BC)
- Teck Sullivan Mine (BC)
- Hudson Bay Mining and Smelting Chisel North Mine (MB)

Reviews:

• Gilles Tremblay (NRC/CANMET), Charlene Hogan (NRC/MEND), Mike Aziz (Goldcorp), Manon Richard (Xstrata), Rick Schwenger (Xstrata), Janice Zinck (NRC/CANMET), and Suzanne Beauchemin (NRC/CANMET).

Neutralization Sludges:

They're not what you think they are.....

BACKGROUND

- At many mine sites the management of ARD involves neutralization with lime to reduce levels of acidity and trace elements prior to discharge to the environment.
- In general, treatment is achieved by raising the pH to values greater than 8.5 and separating the resulting precipitates (sludge) from the treated water prior to discharge.
- Within Canada alone, it is estimated that approximately 7 million m³ of neutralization sludge are produced on an annual basis from mining/metallurgical operations (MEND, 1997).

BACKGROUND cont.

- In general, trace-element associations (i.e., metal-bearing phases) within lime neutralization sludge are not well understood.
- Due to the extremely fine-grained and often amorphous (*i.e.*, non crystalline) character of sludge solids, metal associations have been difficult to elucidate.
- Given that neutralization sludges represent large inventories of metal-rich material, understanding sludge composition is prerequisite for assessing the long-term chemical stability in various depositional settings (pH and Eh dependent solubility).

OBJECTIVES

- To elucidate the trace metal associations (phase relationships) in sludge materials using high resolution microscopy methods; and
- To assess the links between sludge composition, ARD influent chemistry and treatment process;

Provide basis from which to assess long-term chemical stability.

METHODS - Sludge Samples

Sludges from 7 mines across Canada

- 1. Equity Mine (B.C.) Goldcorp Canada
- 2. Geco Mine (Ontario) Xstrata Zinc
- 3. Britannia Mine (BC) EPCOR
- 4. Brunswick Mine (New Brunswick) Xstrata Zinc
- 5. Samatosum Mine (BC) Inmet
- 6. Sullivan Mine (BC) Teck
- Chisel North Mine (Manitoba)- Hudson Bay Mining and Smelting

METHODS - Sludge Samples

Sludges from 7 mines across Canada

- 1. Equity Mine (B.C.) Goldcorp Canada
- 2. Geco Mine (Ontario) Xstrata Zinc
- 3. Britannia Mine (BC) EPCOR
- 4. Brunswick Mine (New Brunswick) Xstrata Zinc
- 5. Samatosum Mine (BC) Inmet
- 6. Sullivan Mine (BC) Teck
- Chisel North Mine (Manitoba)- Hudson Bay Mining and Smelting

Focus of

presentation

today's

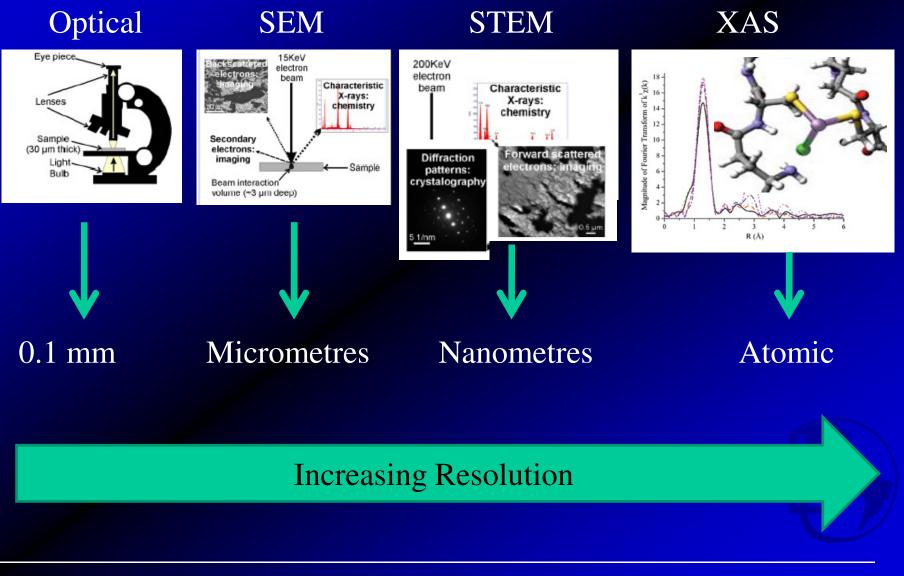
Geology and Treatment Process

	Equity	Geco	Britannia	
Commodities	Au-Ag-Cu	Cu-Zn	n Cu (Zn-Pb-Ag)	
Deposit Type	Intrusion-related hydrothermal	Metamorphosed Volcanogenic Massive Sulfide	Massive Sulfide	
Treatment Process	High density sludge	High density sludge	High density sludge	

HDS: typically 20-30% solids

METHODS – SLUDGE ANALYSIS

Solid Phase:


- Elemental Abundance
- X-Ray Diffraction
- High-resolution microscopy
 - Optical Microscopy
 - Scanning Electron Microscopy (SEM)
 - (Scanning) Transmission Electron Microscopy ((S)TEM).
 - X-ray absorption spectroscopy (XAS): synchrotron accelerator at Canadian Light Source Saskatoon)

Aqueous Phase:

• Influent and effluent chemistry

MICROSCOPY METHODS

Results: ARD Influent (FEED) Chemistry

Parameter	Equity	Geco	Britannia
pН	2.7	3.0	4.05
SO_4	9,900	4,600	1320
Al	776	10	19
Fe	920	1,100	0.6
Mg	919	170	64
Ca	330	338	411
As	6	<0.01	<0.0005
Cd	1.1	0.04	0.09
Zn	123	12	18
Cu	60	0.31	18
Mn	137	7.0	4.2
Ni	8	0.02 0.04	
Pb	<0.3	0.01	0.05

All values in mg/L

Equity:

- High sulphate, Al, Fe, Mg
- Priority trace elements: As, Cd, Cu, Ni, Zn

Geco:

- High sulphate, Fe
- Low Al, Mg
- Priority trace elements: Cu, Zn

Britannia:

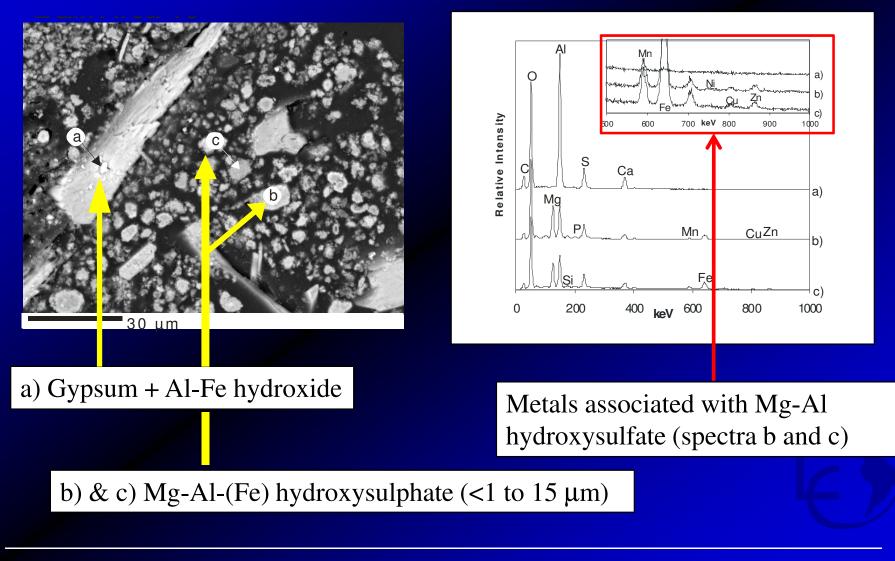
- Low SO4, Fe, Al, Mg
- High Cu, Zn
- Priority trace elements: Cu, Zn

Results – Sludge Elemental Abundance

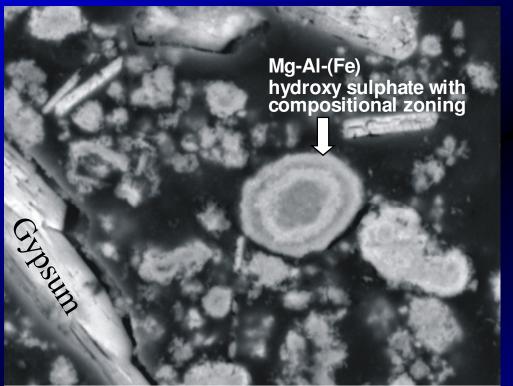
Element	Unit	Equity	Geco	Britannia
Aluminum	%	4.0	0.3	5.6
Calcium	%	14	10	13
Iron	%	4.3	26.2	0.7
Magnesium	%	2.5	0.3	3.5
Sulphur	%	11.6	7.4	1.1
Arsenic	ppm	267	< 0.5	7
Cadmium	ppm	58	7	262
Copper	ppm	2,693	73	50,000
Zinc	ppm	6,317	2,743	52,000
Lead	ppm	0.3	2.6	150
Manganese	ppm	6,956	1,880	12,000
Nickel	ppm	368	9.2	112

EQUITY Mine: Microscopy

Mineral Assemblage:


- Dominant phase: Gypsum (only phase detected by XRD)
- Other mineral phases identified with SEM:
 - > Al hydroxide,
 - Fe-oxyhydroxide,
 - > Calcite
 - > Apatite

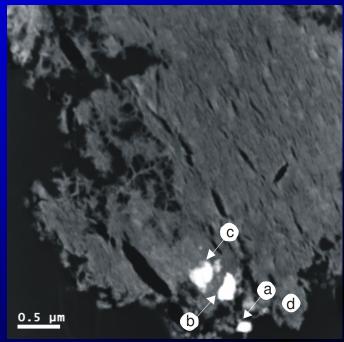
Dominant trace element-bearing phase in the sludge:


Amorphous Mg-Al-(Fe) hydroxysulphate

Consistent with high Mg, Al and sulfate in ARD

EQUITY HDS - SEM BSE Images

EQUITY HDS: Mg-Al-(Fe) hydroxysulphate


10µm

Concentric layers alternating between Mg+Al-rich (Fe-poor) and Fe-rich

Consistent with the dissolution and reprecipitation reactions predicted to occur during sludge recycling in HDS process

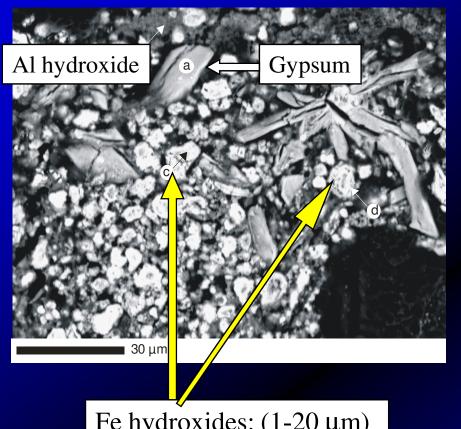
EQUITY HDS: (S)TEM Images and EDS spectra

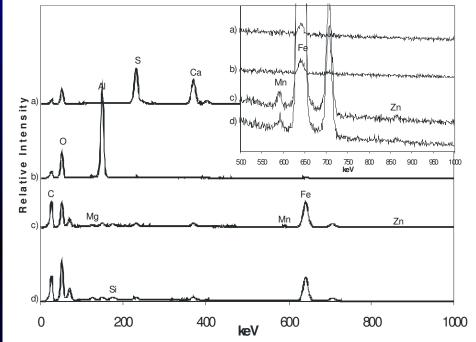
Mg-Al-(Fe) hydroxysulphate

- Zn is more strongly correlated with Mg/Al than Fe.
- Selected-area electron diffraction (SAED) did not produce any discernable diffraction patterns or rings, suggesting that this phase is amorphous.

Geco Mine: Microscopy

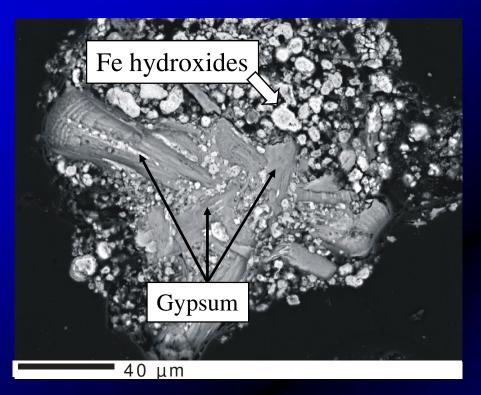
Mineral Assemblage:


- Dominant phase: Gypsum (only phase detected by XRD)
- Other mineral phases identified by SEM:
 - > Al hydroxide
 - Calcite


Dominant trace element-bearing phase in the sludge:

Relatively pure Fe hydroxide

Consistent with high Fe and low Mg & Al in ARD


GECO - SEM BSE Images

Fe hydroxides: (1-20 µm) well rounded grains that display compositional zoning Zn and Cu associated with Fe hydroxides (spectra c and d) and not gypsum (a) or Al hydroxide (b)

GECO - SEM BSE Images

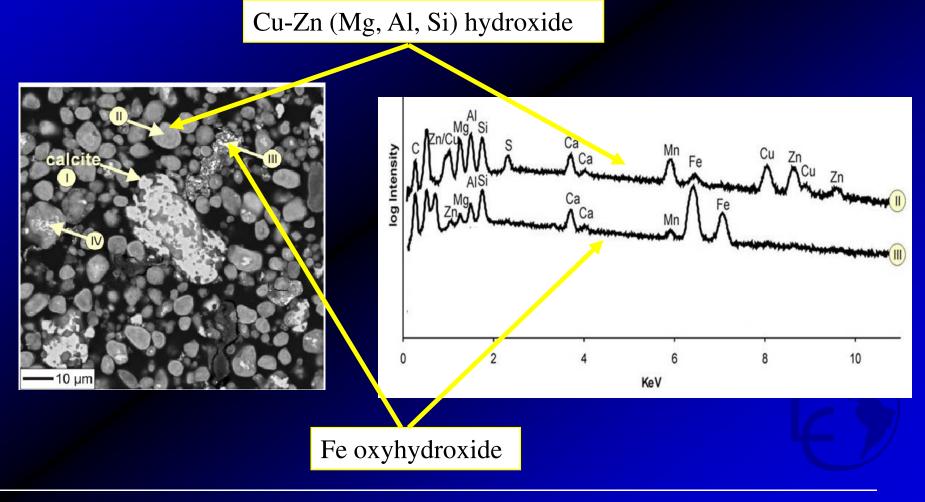
 Fe hydroxide (<1 to 20 µm in size) is essentially pure with only minor amounts of other constituents (e.g. Mg, Al and S).

 Selected area electron diffraction (SAED) indicates the presence of broad diffuse rings, suggestive of poorly crystalline to amorphous Fe oxides.

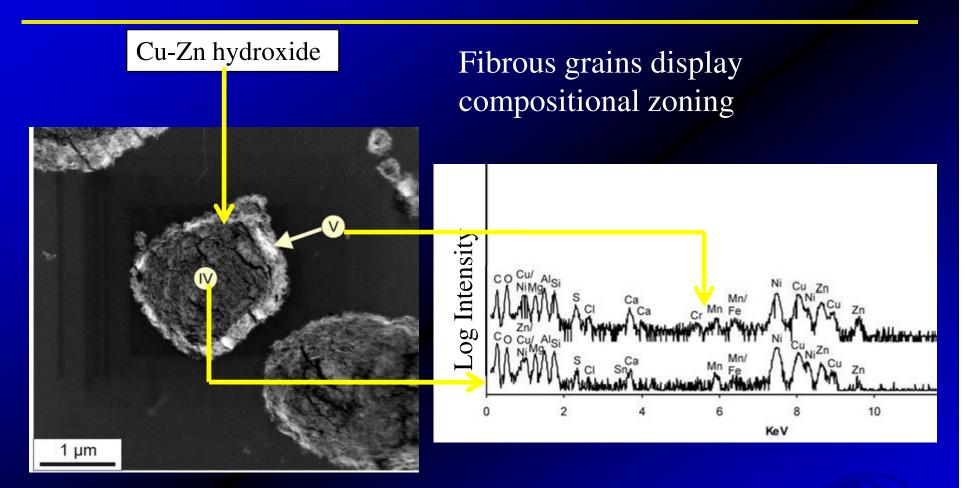
Britannia Mine: Microscopy

Mineral Assemblage:

- Dominant phases by XRD
 - Calcite and/or Mg-calcite
- Other mineral phases identified by SEM:
 - Quartz
 - Fe oxyhydroxide
 - No gypsum


Dominant trace element-bearing phase in the sludge:

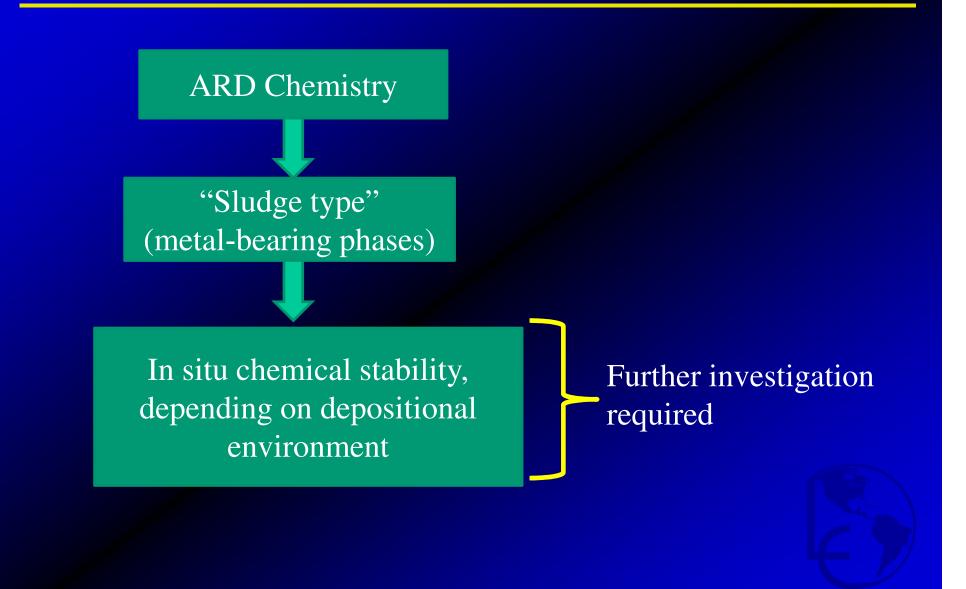
Amorphous Cu-Zn hydroxide


Consistent with low Fe/Al and high Cu and Zn in ARD

Britannia - SEM BSE Images

- Metal bearing phase : fine-grained aggregates of Cu hydroxide
- Contains variable Mg, Al and Si
- Fibrous grains ranging in size from 5 to 100 μm.

Britannia – STEM Images



Selected area electron diffraction patterns consistent with amorphous or nanocrystalline material

SUMMARY

- In all sludges, metal-bearing phases were amorphous (or poorly crystalline) and variable in composition (relatively pure to heterogeneous).
- Metal-bearing phases largely governed by composition of ARD. Proportions of Fe, Mg, Al and S important. Textures and concentric zoning reflective of HDS process.
- Varied spectrum in metal-bearing phases observed, including: 1) heterogeneous Mg-Al-(Fe) hydroxysulphate; 2) relatively-pure Fe hydroxide; and 3) heterogeneous Cu-Zn hydroxide.
- Different metal-hosting phases can be expected to show contrasting chemical stabilities with respect to pH and Eh conditions. Results therefore highlight need to understand controls governing long-term chemical stability of various sludge phases.

Predictive Tool

