

Tulsequah Chief Passive Bioreactor 17th Annual BC-MEND ML/ARD Workshop

Terry Chandler, Chieftain Metals Rob Marsland, MEA Andre Sobolewski, AMEC

Tulsequah Chief Passive Bioreactor

- Site History and Characteristics
- Laboratory and Field Studies
- Passive Bioreactor
- Conclusions

Project Location

Marsland Environmental Associates

Tulsequah Chief Mine Site

Early Project History

- Tulsequah Chief occurrence discovered in 1925.
- Polaris-Taku Mine produced from 1937 to 1951.
- Tulsequah Chief mined from 1951 to 1957 by Cominco Ltd.
- Ore from Tulsequah Chief trucked across the valley to Polaris-Taku for milling.
- Ore concentrate then barged out during summer months on Taku River.
- 580,256 tonnes was mined from Tulsequah Chief at a rate of 480 tonnes per day.

Former Tulsequah town site at Polaris-Taku mine

Historic Workings

Mine Workings – 5200 level drift

Historic Water Quality

- Portal discharge water is a combination of acidic adit water and neutral groundwater
- Average acidic adit water quality is approximately an order of magnitude worse than portal drainage

Parameter	Acid Water	5200 Portal
рН	2.8	3.1
AI	76	14
Cd	1.5	0.3
Cu	126	16
Fe	320	42
Zn	335	64

- EC applied an Inspector's Direction on July 12, 2002 requiring the treatment of discharge from the site.
- Redfern began investigating water treatment options in 2003 and commissioned a limestone/SRB-bioreactor in 2005.
- In July 2005, the CEAA screening amendment process concluded that the project was unlikely to produce any significant environmental impacts and could proceed to the permitting stage.
- Redfern raised funds to start development in 2007 but was forced in to receivership in 2009.
- Chieftain Metals acquired the property in 2010.

Laboratory Studies

Treatment system needed to address many site challenges

- System must be simple
 - -construction cannot require heavy materials or equipment
- Operation will be unattended, especially for 3-6 months during winter
- Temperature is an important factor
- High metal concentrations will produce substantial sludge volume
- Focussed efforts on limestone-SRB treatment concept
 - Limestone bed will neutralize acidity and remove AI, Fe
 - SRB cell will produce sulfide to remove rest of metals (Cd, Cu, Pb, Zn)
- Laboratory designed to produce proof-of-concept

Laboratory Studies

Initial column study with limestone and wood chips

- Limestone neutralized acid water within 6 hours
- Wood chip decomposition did not support SRB activity at 8°C
- Did not address metal removal
- Evaluated synthetic plastics to support SRB activity
 - Plastics tested included polybutylene, polycaprolactone, polyhydrobutyrate
 - Added plastics in serum bottles
 - Inoculated with Tulsequah bugs
 - Measured HS⁻ production at 8 and 26°C

12

Laboratory Studies

- Sulfide production from plastics
 - Plastics were tested at 8 and 26°C
 - Sulfide production slow, but possible at 8°C
- Rate of production compared with mulch/ethylene glycol
 - Plastic: 0.011 mg HS⁻/5g/d
 - Mulch/EG: 0.78 mg HS⁻/5g/d
- Mulch/Ethylene glycol is superior

Evaluated limestone-SRB concept at mine site

- Identified space inside the 5200 level adit for bioreactor
 - Test at ambient (6-7°C) temperature
 - ARD can be piped passively to bioreactor
- Developed a 4-cell vertical flow reactor in a 10 m³ crib
- Formulated limestone-SRB medium
 - Located source of limestone near mine site
- Isolated and grew SRB culture from site
- Obtained wood chipper to produce mulch

Schematic of Pilot Plant Design

Pilot-scale Bioreactor Trial

- ARD fed at ~ 0.25 L/s
- Temperature, flow, and pH monitored daily
- Later, DO/ORP monitored as additional parameter
- Samples taken weekly from inflow/effluent for metal concentrations
- Later, monitor for hydrogen sulfide

Pilot-scale Bioreactor Trial – Results

Pilot-Scale Bioreactor

Pilot-scale Bioreactor Trial – AI, Cd and Cu

- Aluminum removed by >90%
- Copper is removed by 80%

Pilot-Scale Bioreactor

Pilot-scale Bioreactor Trial – Underdrain inspection

Pilot-scale Bioreactor Trial – Sludge Accumulation

Sludge Composition (g/kg)

Sample	AI	Cd	Са	Cu	Fe	Mg	Pb	Zn
Washed sludge	48.0	0.438	24.2	26.3	81.7	12.9	0.256	54.0
Underdrain Sludge	51.8	0.434	11.7	29.0	68.5	6.01	0.321	137

Key Factors:

- Hydraulics
- Residence time
- Iron control

5200 Level Plan

Design – Long Section showing Drain System

Design – Fill Materials

Time: Date: Scale: Drawis

Construction

Place limestone berms

Construction

Construction

- Installing underdrain pipes and risers
- Placing drain rock

Operations – NaOH Pre-treatment

- Prepared 25% NaOH drip solution
- Used metering pump powered by 80 W microhydro

Marsland

Associates

Operations and Monitoring

Operations - Flow Control and Monitoring

Maintenance – "Dirty Jobs" winner

Expanded Chart of Main Bypass (Feed) pH Levels

Treatment Plant Main Bypass (Feed) Metal Levels

Treatment Plant pH Levels

Marsland Environmental Associates

Results – SRB Zn

- Succeeded in achieving unattended metals removal with a passive system while exploration proceeded
- The system operated without major maintenance for over 1 year
- SRB performance was demonstrated

