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Xstrata Copper – diverse copper 
assets and projects
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Kidd Operations

• Located in Timmins, Ontario
• Kidd Mine and Kidd Concentrator
• Copper/zinc mined since 1966
• Production reached 9,200 feet 

(2,800m) in 2009, making the 
operation the deepest base metal 
mine in the world

• Projected mine life to 2017
• Ore processed at Kidd 

Concentrator using conventional 
flotation techniques

• Copper and zinc concentrates 
dewatered and shipped for 
further refinement in Canada
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• Conventional slurry 
tailings discharge started 
in 1966

• Thickened tailings 
discharge since 1973

• Lime Treatment at Pond 
A and C

• Settling Pond D, water 
recycled for milling

• Polishing Pond E
• Treated Final Effluent 

discharged to Porcupine 
River

Kidd Concentrator, 
Tailings Management Area

Porcupine River 
Upstream

Tailings
Management

Area

Concentrator Site

E D

C

A

Porcupine River 
Downstream

Porcupine River
at Hoyle

Final Effluent

No. 2 Tailings 
Thickener
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• Typically during grinding or flotation of sulphide ores          
containing pyrite and pyrrhotite in alkaline conditions:

FeS2 + 2O2 + H2O  Fe2+ + 2OH- + 2S0 

4S0 + 6OH-  2S2- + S2O3
2- + 3H2O

3S2O3
2- + 2O2 + H2O  2S3O6

2- + 2OH-

4S2O3
2- + O2 + 2H2O  2S4O6

2- + 4OH-

• Thiosalts are a series of partially                                           
oxidixed sulphur oxyanions (SxOy

2-)

• Thiosalts generation tends                                                              
to be site-specific

Where/When Thiosalts Occur?
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Thiosalts Speciation (2009-2010)
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• They typically oxidize until end product sulphate (SO4
2-) is reached

• During oxidation reactions, proton (H+) is produced. This represents 
delayed acidity with potential to drop pH in treatment ponds, and 
effluents which could cause aquatic toxicity

S2O3
2- + 2O2 + H2O  2H+ + 2SO4

2-

S3O6
2- + 2O2 + 2H2O 4H+ + 3SO4

2-

S4O6
2- + 7/2O2 + 3H2O  6H+ + 4SO4

2-

or by iron oxyhydroxides (FeOOH):
S2O3

2- + 8FeOOH + 8H+  2SO4
2- + 8Fe2+ + 11H2O 

or simply disproportionate:
S2O3

2- + H2O  SO4
2- + HS- + H+

Why Thiosalts May Require 
Management?
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Thiosalts Monitoring and 
Receiving Environment pH

• Monitoring thiosalts within 
treatment system for 11 years

• Seasonal trend evident, peaks 
lowered, more periods when 
final effluent at 0 mg/L

• Receiving environment pH 
monitoring since 1970’s

• No significant pH depression 
observed downstream
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The Kidd Experience

• Natural thiosalt oxidation in the Tailings Management Area (TMA) 
created the following issues:
– Drops in pH after lime addition points
– Lime addition set-points increased to compensate for pH reduction
– Increased lime costs and sludge generation
– Risks to Final Effluent compliance for pH and Acute Toxicity
– Indirect toxicity in acute lab samples for Daphnia magna and Rainbow Trout, 

downstream monitoring has confirmed no effects

• Assessed Potential Treatment Options in 2004
• Highest Ranked Options included

• Increased/Enhanced Natural Degradation (first-order rate)
• Chemical Oxidation with Hydrogen Peroxide (H2O2)
• Buffering addition using sodium carbonate (CO3

2-) and/or 
sodium bicarbonate (HCO3

-)
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Acute Toxicity Testing, 
Variation in Lab pH
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Hydrogen Peroxide Pilot Plant
Studies in 2007

• Trials investigated peroxide dosage rates, dosing locations at No.2 
Tailings Thickener Overflow which is <1 mg/L iron, ferric iron as 
catalyst, % thiosalts degradation, acute toxicity. 

Dosing System

Dosing Location 
(North Overflow 
Collection Box) 

Peroxide Tanker

Safety Shower
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Hydrogen Peroxide Pilot Plant 
Studies + Ferric Sulphate

• Discovered iron concentrations in the 15-30 mg/L range 
resulted in complete thiosalt destruction within minutes of 
peroxide addition

• Repeated pilot trial with H2O2 and Ferric Sulphate Fe2(SO4)3

• Achieved 100% thiosalt destruction in <5 minutes 
downstream of peroxide addition point

• Maximum H2O2 requirement with Fe2(SO4)3 determined to be 
only 50% of the theoretical requirement
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Chemistry of Iron Catalyzed 
Peroxide Oxidation

“Modified” Fenton’s Reagent (from FMC Environmental Solutions website)

• Chemical oxidation is a proven water treatment technology
• Hydrogen peroxide is a powerful oxidant, but at low concentrations reaction 

kinetics maybe too slow to degrade many contaminants of concern
• Addition of ferrous (II) or ferric (III) iron dramatically increases the 

oxidative strength of peroxide. This increase is attributed to the production 
of hydroxyl radicals (OH*) and initiation of a chain reaction causing the 
formation of new radicals

• The reaction of iron catalyzed peroxide oxidation at pH 3-5 is called 
“Fenton’s Chemistry” after its discoverer H.J.H. Fenton. The iron/peroxide 
combination is known as “Fenton’s Reagent.” If the pH is less than 5, the 
iron (III) is reconverted to iron (II), via a side cyclic reaction, and the iron 
remains in solution to sustain the initiation of hydroxyl radical production. 

• The basic reaction for the application of Fenton’s Reagent is:
Radical initiation

H2O2 + Fe+2 → Fe+3 + OH- + OH* 
Radical Propagation 

OH* + RH → R* + OH-

R* + H2O2 → ROH + OH*
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Thiosalt Treatment System 
Design Criteria (2008)

• Thiosalt concentration = 217 mg/L at No. 2 tailings thickener

• Flow rate = 44,000 m3/day at No.2 tailings thickener

• H2O2 addition rate = 0.00105 mL H2O2/mg thiosalts
– 50% of theoretical requirement from reaction stoichiometry

• Fe2(SO4)3 addition rate = 0.09 mL 55% Fe2(SO4)3/L No. 2 
thickener O/F
– Theoretical requirement to achieve a minimum concentration of 20 mg/L Fe in the 

No. 2 thickener overflow
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Thiosalt Treatment Plant (2009)

• One all weather safety 
shower and eyewash station

• One 40 m3 fibreglass ferric 
sulphate storage tank

• 3 ferric sulphate metering 
pumps housed in an 8’ x 8’ 
building
- Owned by Kidd

• One 50 m3 stainless steel 
H2O2 storage tank

• 4 H2O2 metering pumps 
housed in a 15’ x 8’ sea 
container
- Leased from Arkema

Hydrogen 
Peroxide 
Storage 

Tank

Hydrogen 
Peroxide 

Pump 
Building

Safety 
Shower

Ferric Sulphate 
Pump Building

Ferric Sulphate 
Storage Tank

Security
Camera
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Thiosalt Treatment System

Ferric sulphate metering 
pumps (2 operating 1 spare)

Hydrogen peroxide metering 
pumps (2 operating 2 spare)
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Thiosalt Treatment System 
Control

• Hydrogen peroxide and ferric sulphate
addition rates automatically controlled 
by the PLC
– Adjusted continuously based on the calculated 

No. 2 thickener overflow rate

• Operator is only required to enter a “pre-
treatment” thiosalt concentration once per 
day, which is obtained from a sample of the 
No. 2 thickener overflow that is submitted 
to our onsite Analytical Lab each morning

• Pre-A, Pre-C, and Pre-D samples also 
collected daily to determine treatment 
effectiveness

• Opportunity identified to optimize reagent 
addition rates by incorporating natural 
degradation within existing system
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Screen Shot 

In 2009, hydrogen peroxide and ferric sulphate made up 19% of the 
site total water treatment reagent costs.
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Hydrogen Peroxide Consumption 
Optimization

Season

Average % 
Natural 
Thiosalt 

Degradation

Natural 
Thiosalt 

Degradation 
Factor

Winter 35.0 0.35

Spring 50.0 0.50

Summer 85.0 0.85

Fall 75.0 0.75
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Hydrogen Peroxide Consumption 
2009 & 2010 After Optimization
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The Kidd Experience (Now)

• Optimization has reduced consumption and costs for peroxide
• No further drops in pH after lime additions points
• Lime addition set-points have now been lowered
• Sludge generation has decreased
• Reduced re-circulating load of thiosalts in recycle water
• No need for non-routine addition of neutralizing agents, safety
• Final effluent in compliance, no pH issues.
• Carbon dioxide consumption has dropped, lower incoming pH’s
• No more sporadic acute toxicity tests at the lab for past 2 years
• Reduced residual process reagents (ie: xanthate) in effluent
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Other H2O2 Treatment Plants for 
Oxidation of Thiosalts

Location Ore 
Type

Install
Date

Vendor Capacity

Apirsa Mine 
Seville,
Spain

Zinc,
Lead,

Copper

2001 Degussa 50% H2O2, 13000 USG 
Storage, 750-800 m3/h 
flow rate with 500 mg/L 
thiosalts, 13 tpd average

Brunswick Mine 
Bathurst, NB, 
Canada

Zinc,
Lead,

Copper, 
Silver

2004 Degussa 50% H2O2, 9500 USG 
Storage, 10 tpd average 
in spring, 30 tpd peak

Kidd Met. Site 
Timmins, ON, 
Canada

Zinc, 
Copper,
Silver

2009 Arkema 50% H2O2, 13000 USG 
Storage, 20 tpd average, 

36 tpd peak
Voisey’s Bay 
Mine & Mill Site, 
NL, Canada

Nickel, 
Copper, 
Cobalt

2010 TBD TBD
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Knowledge Sharing

Sudbury 2007 Mining & Environment Conference – Managing 
Thiosalts in Mill Effluents “Studies Conducted at the Kidd 
Metallurgical Site” by Nural Kuyucak, David Yaschyshyn

2009 Xstrata Copper Canada Sustainable Development 
Report – Case Study “Sharing innovative solutions in water 
treatment with the industry”

42nd Annual CMP Conference (Ottawa) January 2010 –
“Development of a Thiosalt Treatment System at Xstrata 
Copper Kidd Metallurgical Site” by Andréa Lagacé

17th Annual BC/MEND Metal Leaching/Acid Rock Drainage 
Workshop, Vancouver December 2010 – “Managing Thiosalts 
at Xstrata Copper, Kidd Operations” by David Yaschyshyn
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Knowledge Sharing

CANMET MMSL Thiosalts Consortium 2009 Annual Meeting –
held at Kidd Metallurgical Site with field tour of peroxide plant 
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Thank You. Questions?
(dyaschyshyn@xstratacopper.ca)


