Toxicity Investigations

Case Studies with Metal Mining Effluent

Lesley Novak & Keith Holtze

Background – What Is A TRE?

- A Toxicity Reduction Evaluation (or TRE) is a site specific, step-wise diagnostic approach to resolving toxicity issues.
- TREs are used mostly for compliance purposes with rainbow trout and Daphnia magna
- Industries are trying to achieve a non-acutely lethal effluent

≤50% mortality in 100% effluent = PASS

>50% mortality in 100% effluent = FAILURE

Background – What Is A TRE?

- Diagnostic approach, including:
 - 1. Information and Data Acquisition
 - Evaluation of Remedial Actions to Optimize the Operation / Process
 - 3. Toxicity Identification Evaluation (TIE)
 - Phase 1 Characterization
 - Phase 2 Identification
 - Phase 3 Confirmation
 - 4. Source Investigation (SI)
 - 5. Toxicity Treatability Evaluation (TTE)
 - 6. Confirmation of Removal of Toxicity

Case Studies A Tale of Four Effluents

- Toxicity investigations conducted at different times at four different mining operations
- Effluent characteristics and patterns of mortality were similar

Site #1 Cu & Zn ot and Dm	Site #2 Ni & Cu	Site #3 Ni & Cu	Site #4 Zn & Pb	
		Ni & Cu	<i>7</i> n & Ph	
ot and Dm			2	
	Rbt	Rbt and Dm	Rbt and Dm	
2- to 96-h; en post 96-h	72- to 96-h in winter; earlier in summer	Variable, often within 24-h	72- to 96-h	
No	Sometimes	No	Unknown	
No	No	No	No	
Mortality in 100%, but non-dose responses sometimes observed				
ay; Aug to Oct	Increased mortality in summer	May to Oct	Mar to April	
o 140 mg/L	300 to 600 mg/L	128 to 1700 mg/L	<10 to 1000 mg/L	
hiosulfate	Thiosulfate	?; likely thiosulfate	Thiosulfate	
to 13 mg/L	0.1 to 2 mg/L	?, but xanthates are used	<5 to 24 mg/L	
	n post 96-h No No Mortality in 1 ay; Aug to Oct 140 mg/L niosulfate	winter; earlier in summer No Sometimes No No Mortality in 100%, but non-dose ay; Aug to Oct Oct 140 mg/L 100 mg/L Thiosulfate Winter; earlier in summer 300 to 600 mg/L	No Sometimes No	

Case Studies A Tale of Four Effluents

- For all 4 investigations, results from toxicity investigations suggested:
 - Multiple contaminants were responsible for toxicity
 - Metals, TDS, nitrite, nitrate, ammonia were NOT responsible
- In all 4 effluent samples elevated thiosalts, but . . .
 - no correlation between total thiosalt concentration and toxicity
- So what was causing mortality?
 - Direct toxicity due to thiosalts (or individual thiosalt species)?
 - Indirect toxicity due to acidic generation?
 - Other (secondary) toxicant(s)?

Direct Toxic Effects

- Thiosulfate LC50s
 - rainbow trout (96-hour) ~ 7,378 mg/L (AquaTox)
 - Daphnia magna (48-hour) ~1,012 mg (AquaTox)
 - *Daphnia magna* (48-hour) ~ 910 mg/L (US EPA, 1991)
- Trithionate LC50s
 - rainbow trout (96-hour) ~?
 - Daphnia magna (48-hour) ~1,400 mg/L (Schwartz et al., 2006)
- Tetrathionate LC50s
 - rainbow trout (96-hour) >800 mg/L (Schwartz et al., 2006)
 - Daphnia magna (48-hour) ~ 750 mg/L (Schwartz et al., 2006)

Indirect Toxicity

- Thiosalts can undergo oxidation to produce sulfuric acid and a corresponding pH decline.
- Rainbow trout & Daphnia magna
 - prolonged exposure to pH < 5 will probably cause extreme stress and very likely mortality
- We have often observed declines to as low as pH 3 in samples containing thiosalts.
- Tested other samples with similar thiosalt concentrations, but pH decline was not low enough to cause mortality.
- So what is causing toxicity?

Indirect Toxicity

- Many factors can effect thiosalt oxidation (and acid generation):
 - Aeration (oxygen)
 - Light
 - Temperature (seasonality)
 - Bacteria (presence/absence)
- Why do we care?
 - these factors contribute to effluent variability and the expression of toxicity in an acute lethality test
 - effluents are not at equilibrium when thiosalts are present;
 toxicity can be a "moving target"
 - other possible contaminants could also be influenced if their toxicity is pH dependent

Secondary Toxic Effects

- Detection of the secondary toxicants can be one of the most difficult aspects of any toxicity investigation
 - particularly complicated in the presence of thiosalts
 - pH decline caused by thiosalts may mask the presence of other toxicants
 - perhaps even causing other substances to become toxic
- Many TIE treatments that remove thiosalts also remove other toxicants.
- How do we identify secondary toxicants when thiosalts are present?
- Case Study

Case Study

Summary of treatment effects on thiosalt degradation and rainbow trout mortality

	0-h				0/ Trout	
TIE Treatment	Thiosulfate (mg/L)	Trithionate (mg/L)	Tetrathionate (mg/L)	Total Thiosalts (mg/L)	% Trout Mortality @ 96-h	
Baseline	350	22	6.3	400	100	
Anion Exchange	0.4	<2	<0.2	<10	0	
XAD	350	21	4.8	310	0	
SPE with C18 @ pH _i	350	24	3.8	323	0	
Heat (boiling)	420	5.2	4.9	352	0	
pH 3	350	25	9.6	296	0	
Chlorination (5 mL/L)	0.4	<2	160	166	0	
EDTA	350	22	14	318	0	
H ₂ O ₂ (0.5 mL/L) + 10 mg/L ferric sulfate	23	61	24	53	0	

Phase II TIE

- Treated the acutely lethal effluent sample using a C18 column (resin that removes relatively non-polar organics)
 - The treated effluent was non lethal
- Toxicant(s) is likely on the resin
 - Concentrate toxicant on C18 resin
- Extract toxicant from C18 resin using methanol (rinse the C18 column with 100% methanol)
 - Tested the 100% extract and found to be acutely lethal
 - Subjected this toxic fraction to GC/MS

Phase II TIE – What Did We Find?

- Baseline sample:
- 1. 100% trout mortality
- 2. Total thiosalts = 400 mg/L
- 3. Isopropyl ester of N-ethyl thiocarbamic acid
- 4. A homologous series of propylene glycols

Phase II TIE – What Did We Find?

- Treatment with C18:
- 1. Eliminated toxicity
- 2. No effect on thiosalts
- 3. Removed the organics detected in Baseline

Phase II TIE – What Did We Find?

- 100% methanol extract:
- 1. Recovered toxicity
- 2. No effect on thiosalts
- 3. Recovered the organics detected in the baseline effluent

Phase II TIE - What Did We Find?

- Where are the chemicals coming from?
- Submitted various process chemicals for GC/MS analysis
- N-ethyl thiocarbamate found in the effluent samples was also present in a xanthate product

Xanthates

- Used as collectors during the processing of sulphide ore by flotation.
- Hydrolysis is the principal factor in determining their fate in the environment, but this process is pH- and temperaturedependent.
- Under acidic conditions, it is unstable and rapidly hydrolyzes to: ethanol, carbon disulphide & caustic soda (Rao, 1971).

Xanthates

- Examined available xanthate toxicity data
- More acutely lethal in effluent than lab dilution water
- Effluent samples also contained thiosalts

Product	Test Water	Rainbow trout 96-h LC50 (mg/L)	
sodium isopropyl xanthate +	Effluent	1.1 - 3	
additive	Dilution Water	> 300	
notoccium amyl vanthata	Effluent	<6.25	
potassium amyl xanthate	Dilution Water	100 - 1000	
notoccium icobutyl	Effluent	?	
potassium isobutyl	Dilution Water	?	

What Happens to Xanthates at Low pH?

- Spiked varying concentration of "Flex" (sodium isopropyl xanthate + additive) into lab dilution water
- Tested for toxicity to rainbow trout at three different pHs in clean lab water
 - pH 8, pH 6 and pH 5
- Measured (in selected exposure solutions) concentrations of:
 - Xanthate
 - Carbon disulfide
 - Sulphide
 - H₂S

What Happens to Xanthates at Low pH?

- Testing indicated that toxicity to Flex increased as pH decreased
- What happens to:
 - Xanthate?
 - Carbon disulfide?
 - Sulphide?
 - H₂S?

What Happens to Xanthates at Low pH?

- Concentrations of total xanthate and carbon disulfide were generally lower at pH 5 than at pH 8
 - Yet mortality was greater at pH 5 than at pH 8
- Sulfide (S²⁻) and H₂S concentrations increased with decreasing pH
- From the literature:
 - At pH 5 ~ 99% of S^{2-} exists as H_2S
 - At pH 6 ~ 93% of S^{2-} exists as H_2S
 - At pH 7 ~ 57% of S^{2-} exists as H_2S

... And What About Thiosalts?

- Oxidation of thiosalts in the environment would be very slow if there was no bacterial oxidation (Silver and Dinardo, 1981)
 - Thiobacillus (i.e., T. thiooxidans and T. ferrooxidans)
 oxidize thiosulfate to sulfate
- So what happens to thiosalts and effluent toxicity if we inhibit the bacteria?

Parameter	Effluent ("As Is")			Effluent + Tetracycline		
	Day 0	Day 5	Day 8	Day 0	Day 5	Day 8
Mortality (%)	0	20	100	0	0	0
рН	7.2	5.2	3.6	6.1	6.6	6.8
Thiosulfate	420	410	< 2	440	460	420
Trithionate	37	30	31	42	28	26
Tetrathionate	9.9	17	250	10	11	16

What Do We Think We Might or Might Not Know About Thiosalts, Xanthates & Acute Lethality?

- Effluents are not at equilibrium when thiosalts are present; toxicity can be a "moving target"
- Thiosalts on their own can cause toxicity
- Thiosalt oxidation results in acid generation
 - As pH decreases, secondary toxicants (like xanthates and H₂S) can result in mortality
- More research is still needed to understand mechanisms for thiosalts degradation and toxicity (e.g., bacterial role)
- Results help to explain the link between thiosalt oxidation, pH shift and the presence of one or more contaminants which may be pH-dependent in its expression of toxicity

Thank You!

Questions?

AquaTox Testing & Consulting Inc. www.aquatox.ca

