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Overview

Uranium is commonly co-
mineralized with other reduced 
minerals containing As, Ni, Mo 
and Se



Presentation title – Presenter/ref. - 18 February 2012 - p.4

Overview

Uraninite – UO2

Rammelsbergite – NiAs2

Niccolite – NiAs
Gersdorfite – NiAsS
Molybdenite – MoS2

Jolliffeite – (Ni,Co)AsSe

NiAsS

NiAs
(mainly Uraninite UO2)

NiAs2
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Overview

Uranium and reduced co-mineralized elements are oxidized to more 
soluble forms by the mill process

Ore
Mill

Environment
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AsO4
3-, AsO3

3-
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MoO4
2-

SeO4
2-, SeO3
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Overview

Soluble forms of five elements are identified as COCs in the 
receiving aquatic environment

McClean Lake 
(East Basin)

Vulture Lake

Collins Creek

Sink 
Reservoir

JEB Mill

UO2+

AsO4
3-, AsO3

3-

Ni2+

MoO4
2-
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Constituents of Concern (COC)
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Overview

Require a Process Capable of Controlling these 5 COCs

WTP   Aquatic 
Environment

COCs

Sludge
COCs

Waste water management:
Potential operational period effects

Tailings management: 
Potential post-decommissioning
effects

Waste Water and Tailings Management Systems

COCs

COCs

TMF

TP Process
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Overview
Operational Features of the 
JEB Tailings Management Facility (TMF)
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Overview

Arial Photo of JEB TMF
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Overview
Arsenic Content of Ore Bodies to be 
Processed at the JEB Mill

Ore Body As Content
(µg/g)

JEB 9,100
Sue C 300
Sue A 6,000
Sue E 2,500
Sue B 6,000
Caribou 5,000
Midwest 43,000
Cigar Lake 25,700
McClean u/g 2,000
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TMF Design

Two Passive Techniques
geotechnical – natural surround design:  physical control of 

groundwater flow path around tailings mass.
geochemical – engineered tailings geochemistry:  minimize and 

stabilize COC pore water concentrations in tailings solids.

Post-Decommissioning Control of Solute 
Release to Groundwater System
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TMF Design

Athabasca 
Sandstone 

kh~10-5

Plan View Depicting the Natural Surround Concept

Geotechnical
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Design
 precipitate arsenic with ferric iron at low pH

 the ferric arsenate precipitate produced is a poorly crystalline form of the 
mineral scorodite – Fe AsO4•2H2O

 near neutral discharge pH from tailings preparation process
 arsenic pore water concentration constant, controlled by Ksp, and 

independent of arsenic content in ore

Engineered Tailings Geochemistry Concept

TMF Design
Geochemical
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Tailings Preparation Process
TMF Design

 

to TMF

24 hour metallurgical
composite sample

Raffinate 
Tailings 
BaCl 2 

Fe 2 (SO 4 ) 3 
CaO  (pH 4) 

pH pH

THICKENER

NEUTRALIZATION TANKS

Flocculant

CaO  (pH 7.5)

MIXING TANK 

Process Air

pH 1 
Fe3+/AsTOT = 3 
Eh = 680 mV 

BaCl2
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TMF Performance

Average solute concentration volume weighting

TMF Sampling
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Average Pore Water Solute Concentration

TMF Performance
TMF Sampling
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TMF Performance
TMF Sampling
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Control Mechanism
raffinate

leach residue

Precipitation:
(Scorodite)

Ksp α [Fe3+]aq [AsO4
3-]aq

BaCl2

Raffinate 
Tailings 

Fe 2 (SO 4 )  3 
CaO  (pH 4) 

pH pH

NEUTRALIZATION TANKS

CaO (pH 7.5)

MIXING TANK 

Process Air 

pH 1 
Fe3+/AsTOT = 3 
Eh = 680 mV 

Precipitation VS Adsorption

CaO
CaO

[As] aq
Adsorption: Kp α

[As] sed

pH 1

pH 7

pH 10.5Cluff Lake

McClean Lake

TMF Performance
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TMF Performance
As in Tailings Pore Water vs Total As Content of Solids
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TMF Performance
JEB TMF
2008 JEB TMF Tailings Pore Water As5+ (mg/L) vs Sediment As (ug/g)

Linear previous practice   
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JEB TMF
2008 JEB TMF Tailings Pore Water Ni (mg/L) vs Sediment Ni (ug/g)

TMF Performance
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TMF Performance
JEB TMF

JEB TMF Tailings Pore Water Se (mg/L) vs Sediment Se (ug/g)
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JEB TMF
2008 JEB TMF Tailings Pore Water Mo (mg/L) vs Sediment Mo (ug/g)

TMF Performance
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TMF Performance
JEB TMF 
COC Pore Water Concentrations
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Eh Ladder

TMF In Situ 
Monitoring and 

Sampling

Current Redox Conditions
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Laboratory 
Studies

Arsenic Geochemical Model

Relative As Oxidation State in 
Sediment vs Sediment Age
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Arsenic Geochemical Model

Tailings sediments contain small residual amounts of primary 
arsenic bearing minerals – niccolite (NiAs) rammelsbergite (NiAs2) 
and gersdorfite (NiAsS)

These reduced minerals are not stable in the TMF and must 
oxidize

Oxidation of arsenides to stable arsenates occurs through a two 
step process: As1- to As3+ and As3+ to As5+

Laboratory Studies
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Arsenic Geochemical Model

NiAs↓ + 5 Fe3+ + 3H2O → H3AsO3
o + Fe2+ + Ni2+ + 3H+

H3AsO3
o → As2O3 ↓ + 3H2O

[As1-] [As3+]

(niccolite)

(claudite)

Laboratory Studies

First Oxidation Step
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Arsenic Geochemical Model

H3AsO3
o + 2Fe3+ + H2O → HAsO4

2- + 2Fe2+ + 4H+

HAsO4
2- + Fe3+ + 2H2O → FeAsO4·2H2O ↓ + H+ 

Second oxidation step is rate limiting

[As5+][As3+]

(scorodite)

Laboratory Studies

Second Oxidation Step
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Arsenic Geochemical Model

NiAs + 8Fe3+ + 6 H2O → FeAsO4·2H2O↓ + 7Fe3+ + Ni2+ + 8H+

In the TMF, reactions occur very slowly (over 3 to 4 years) due to a 
lack of mixing and low L/S ratio

Anticipate As3+ pore water concentrations to initially rise then fall to 
near zero after the As1- content in the sediment is depleted

As5+ pore water concentrations should remain constant

[As5+][As1-]

(niccolite) (scorodite)

Laboratory Studies

Overall Reaction
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As Speciation Data for 
Bore Hole TMF08-01

360.0

370.0

380.0

390.0

400.0

410.0

420.0

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0

Pore Water As3+ and As5+ (mg/L)

El
ev

at
io

n 
(m

as
l)

0 20 40 60 80 100

Sediment rel. %As5+

Pore Water As(III) mg/L
Pore Water As(V) mg/L
Sediment rel.%As(V)

modified Fe3+

control  parameter
March 2004

Fe3+ addition
to leaching
May 2006

oxidation of
As1- in TMF

oxidation of 
As1- in mill

Arsenic Geochemical Model

Laboratory Studies
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Laboratory Studies

Photograph of Scorodite Scale from Leaching Process Reactor Tank
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Laboratory Studies

Chemical Analysis of Scale from #5 
Secondary Leach Vessel
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Comparison of XRD patterns from Scorodite Standard
and the Reactor Tank Scale

Laboratory Studies



Presentation title – Presenter/ref. - 18 February 2012 - p.36

Laboratory Studies

Comparison of Raman Spectra from Scorodite Standard
and the Reactor Tank Scale



Presentation title – Presenter/ref. - 18 February 2012 - p.37

Arsenic Geochemical Model
Laboratory Studies

Comparison of [As] Observed in SEPA Aging, TOVP Aging 
and Actual Aging in the TMF
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HC Geochemical Model

Small amounts of HC11-20 absorb onto the surface of tailings solids 
and are deposited in the TMF

Bacterial communities oxidize HC to soluble HCO3
- following 

placement in the TMF

HCO3
- concentrations may reach saturation with calcite providing 

an upper bound HCO3
- value

Laboratory Studies
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HC Geochemical Model

CH2O    +    O2 →   HCO3
- +    H+     

CaSO4·2H2O↓  → Ca2+ +    SO4
2- +    2H2O

Ca2+ +    HCO3
- +    OH- →  CaCO3↓    +    H2O

(bacteria)

(gypsum)

(calcite)

Laboratory Studies
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HC Geochemical Model 

CaSO4·2H2O↓  +   HCO3
- +  OH- →   CaCO3↓  +  SO4

2- +  3H2O

The reaction proceeds very slowly due to a lack of mixing and low 
L/S ratio

HCO3
- can accumulate prior to the precipitation of calcite

Expected evidence of the occurrence of this reaction in the TMF 
includes controlled HCO3

- concentrations, temporarily depressed 
Ca2+ concentrations, and rising SO4

2- and Na+ values

(gypsum) (calcite)

Laboratory Studies

Overall Reaction



Presentation title – Presenter/ref. - 18 February 2012 - p.41

HC Geochemical Model

* indicates values extrapolated from charge balances 

Laboratory Studies

Major Ion Pore Water Concentrations in TMF08-03 
Indicating Calcite Precipitation below 384 masl
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HC Geochemical Model
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HC Geochemical Model
Laboratory Studies

Calcite Formation in Lower Tailings Containing 560ug/g 
Residual HC, TMF08-03 SA-14 376.0 masl
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U and HCO3
- in Bore Hole TMF08-03
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Mo Geochemical Model

MoO4
2- precipitates with Fe3+ at pH 4 potentially as the mineral 

ferrimolybdite in the tailings preparation process

At the terminal pH of 7.5, ferrimolybdite begins to re-dissolve

After disposal in the TMF the dissolution continues to completion

Rising MoO4
2- values reach saturation with powellite providing a 

long term Mo concentration upper bound

Laboratory Studies
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Laboratory Studies

Overall Waste Water Management Mo Mass Balance for
McClean Lake Operation January to October 2004.

Mo Geochemical Model
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Mo Geochemical Model

Fe2(MoO4)3·6H2O↓ → 3MoO4
2- + 2Fe(OH)3↓ + 6H+

CaSO4·2H2O↓  → Ca2+ +    SO4
2- +    2H2O 

Ca2+ +    MoO4
2- →  CaMoO4↓ 

Overall:

CaSO4·2H2O↓    +    MoO4
2- →    CaMoO4↓    +    SO4

2- +    2H2O 

(ferrimolybdenite) (ferrihydrite)

(gypsum)

(powellite)

(powellite)(gypsum)

Laboratory Studies
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Laboratory Studies
Mo TOVP Aging Test

(Jan. 30, 2010 to July 29, 2011)
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Mo Geochemical Model
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Sediment Aging of Whole Tailings – As and Mo

Effect of Particle Size Distribution
Case Study #1
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Sediment Aging of Whole Tailings – Eh and Major Ions

Case Study #1
Effect of Particle Size Distribution
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TMF Sediment Aging of Coarse Tailings – As, As5+ and Eh
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TMF Sediment Aging of Coarse Tailings – HCO3
-, Ca2+, Na+ and SO4
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TMF Sediment Aging of Fine Tailings – As, As5+ and Eh
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TMF Sediment Aging of Fine Tailings – HCO3
-, Ca2+, Na+ and SO4
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Conclusions

10+ years of TMF operation have verified that COCs are 
controlled to near constant values in tailings pore water
the tailings COC pore water concentrations are independent 
of sediment COC concentrations
geochemically, the sequestered COCs are characteristic of 
chemical/mineral phases and stable under TMF conditions
investigative efforts continue concerning COC mineral 
identification (nano-scale structures) and their long term 
aging behaviour
particle size segregation in placed tailings introduces 
spatial and temporal variations in geochemical observations

Confirmation of Engineered Tailings 
Geochemistry Concept


