

Uranium Tailings Management at AREVA Resources Canada Inc.

Part 1: Design Confirmation and Geochemical Observations from the McClean Lake Operation in Northern Saskatchewan

> 18th Annual BC/MEND Workshop November 30 – December 2011 Vancouver

Contents of Presentation

- Overview of Waste Water and Tailings Management Systems
- Tailings Management System Design
- Tailings Geochemical Performance
 - sampling
 - pore water observations
 - sediment observations
- COC Pore Water Controls
 - 🔶 arsenic
 - bicarbonate ion (uranium)
 - molybdenum
- Case Studies Effect of Grain Size Distribution
 - whole tailings
 - 🔶 coarse tailings
 - 🔶 fine tailings
- Conclusions

Uranium is commonly comineralized with other reduced minerals containing As, Ni, Mo and Se

Presentation title - Presenter/ref. - 18 February 2012 - p.3

- Uraninite UO₂
- Rammelsbergite NiAs₂
- Niccolite NiAs
- Gersdorfite NiAsS
- Molybdenite MoS₂
- Jolliffeite (Ni,Co)AsSe

Uranium and reduced co-mineralized elements are oxidized to more soluble forms by the mill process

Constituents of Concern (COC)

Soluble forms of five elements are identified as COCs in the receiving aquatic environment

Overview Waste Water and Tailings Management Systems Require a Process Capable of Controlling these 5 COCs Waste water management: **Potential operational period effects** din e an de a data da des des altres d COCs Aquatic **WTP TP Process Environment** Sludge COCs COCs **Tailings management:** Potential post-decommissioning TMF effects COCs

ARE\

Operational Features of the JEB Tailings Management Facility (TMF)

Arial Photo of JEB TMF

Presentation title - Presenter/ref. - 18 February 2012 - p.9

Arsenic Content of Ore Bodies to be Processed at the JEB Mill

Ore Body	As Content (µg/g)	
JEB	9,100	
Sue C	300	
Sue A	6,000	
Sue E	2,500	
Sue B	6,000	
Caribou	5,000	
Midwest	43,000	
Cigar Lake	25,700	
McClean u/g	2,000	

TMF Design

Two Passive Techniques

- geotechnical natural surround design: physical control of groundwater flow path around tailings mass.
- geochemical engineered tailings geochemistry: minimize and stabilize COC pore water concentrations in tailings solids.

TMF Design

Geotechnical

Plan View Depicting the Natural Surround Concept

TMF Design

Geochemical

Engineered Tailings Geochemistry Concept

Design

- precipitate arsenic with ferric iron at low pH
- the ferric arsenate precipitate produced is a poorly crystalline form of the mineral scorodite – Fe AsO₄•2H₂O
- near neutral discharge pH from tailings preparation process
- arsenic pore water concentration constant, controlled by K_{sp}, and independent of arsenic content in ore

AREVA

AREVA

TMF Sampling

Average solute concentration volume weighting

TMF Sampling

Average Pore Water Solute Concentration

TMF Sampling

Control Mechanism

TMF Performance

AREVA

AREV

As in Tailings Pore Water vs Total As Content of Solids

Presentation title - Presenter/ref. - 18 February 2012 - p.19

AREVA

JEB TMF

2008 JEB TMF Tailings Pore Water As⁵⁺ (mg/L) vs Sediment As (ug/g)

AREVA

JEB TMF

AREVA

JEB TMF

JEB TMF

Presentation title - Presenter/ref. - 18 February 2012 - p.23

JEB TMF COC Pore Water Concentrations

		Sediment Conc. Range	Pore Water Concentrations	
Analyte	No. Samples	(µg/g)	Avg. (mg/L)	1σ (mg/L)
As ^{5x}	65	137 – 11,500*	0.90	± 0.55
Ni	66	120 – 7,800	0.68	± 0.43
Мо	66	20 – 609	8.81	± 9.28
Se	66	0.5 – 35	0.008	± 0.009
²²⁶ Ra	64		5+	± 4 ⁺

* total As for sediment only

† unit is (Bq/L)

TMF In Situ Monitoring and Sampling

General Water Quality Parameters

Sample Elevation vs pH and Eh

AREVA

Presentation title - Presenter/ref. - 18 February 2012 - p.25

TMF In Situ Monitoring and Sampling

Current Redox Conditions

Eh Ladder

Arsenic Geochemical Model

Relative As Oxidation State in Sediment vs Sediment Age

Presentation title - Presenter/ref. - 18 February 2012 - p.27

Arsenic Geochemical Model

- Tailings sediments contain small residual amounts of primary arsenic bearing minerals – niccolite (NiAs) rammelsbergite (NiAs₂) and gersdorfite (NiAsS)
- These reduced minerals are not stable in the TMF and must oxidize
- Oxidation of arsenides to stable arsenates occurs through a two step process: As¹⁻ to As³⁺ and As³⁺ to As⁵⁺

Arsenic Geochemical Model

First Oxidation Step

 $H_3AsO_3^o \rightarrow \underset{(claudite)}{As_2O_3} \downarrow + 3H_2O$

Arsenic Geochemical Model

Second Oxidation Step
[As³⁺]
H₃AsO₃° + 2Fe³⁺ + H₂O
$$\rightarrow$$
 HAsO₄²⁻ + 2Fe²⁺ + 4H⁺
HAsO₄²⁻ + Fe³⁺ + 2H₂O \rightarrow FeAsO₄·2H₂O \downarrow + H⁺
(scorodite)

Second oxidation step is rate limiting

Arsenic Geochemical Model

Overall Reaction

 $\underset{(\text{niccolite})}{^{[\text{As}^{1\cdot}]}} \overset{[\text{As}^{5+}]}{\underset{(\text{scorodite})}{^{[\text{As}^{5+}]}}} \xrightarrow{[\text{As}^{5+}]} FeAsO_4 \cdot 2H_2O \downarrow + 7Fe^{3+} + Ni^{2+} + 8H^+$

- In the TMF, reactions occur very slowly (over 3 to 4 years) due to a lack of mixing and low L/S ratio
- Anticipate As³⁺ pore water concentrations to initially rise then fall to near zero after the As¹⁻ content in the sediment is depleted
- ► As⁵⁺ pore water concentrations should remain constant

Arsenic Geochemical Model

As Speciation Data for Bore Hole TMF08-01

→ Pore Water As(III) mg/L
→ Pore Water As(V) mg/L
→ Sediment rel.%As(V)

Presentation title – Presenter/ref. - 18 February 2012 - p.32

Photograph of Scorodite Scale from Leaching Process Reactor Tank

Element	Content (%)	
As	40.00	
Fe	30.34	
Si	4.57	
Р	0.80	
AI	0.70	
S	0.55	
Мо	0.45	
Bi	0.41	
U	0.33	
Ti	0.33	
K	0.31	
Pb	0.23	
Ni	0.16	
Ca	0.16	
Zr	0.13	
Cu	0.10	
W	0.08	
V	0.02	
Sc	0.02	
Cr	0.008	
Sr	0.007	

Chemical Analysis of Scale from #5 Secondary Leach Vessel

Comparison of XRD patterns from Scorodite Standard and the Reactor Tank Scale

AREVA

Comparison of Raman Spectra from Scorodite Standard and the Reactor Tank Scale

AREVA

Arsenic Geochemical Model

HC Geochemical Model

- Small amounts of HC₁₁₋₂₀ absorb onto the surface of tailings solids and are deposited in the TMF
- Bacterial communities oxidize HC to soluble HCO₃⁻ following placement in the TMF
- HCO₃⁻ concentrations may reach saturation with calcite providing an upper bound HCO₃⁻ value

HC Geochemical Model

$$CH_2O + O_2 \rightarrow HCO_3^- + H^+$$

(bacteria)

 $Ca^{2+} + HCO_{3}^{-} + OH^{-} \rightarrow CaCO_{3} \downarrow + H_{2}O$

HC Geochemical Model

Overall Reaction

$\begin{array}{cccc} CaSO_4 \cdot 2H_2O \downarrow & + & HCO_3^- + & OH^- & \rightarrow & CaCO_3 \downarrow & + & SO_4^{2-} & + & 3H_2O_{(calcite)} \end{array}$

- The reaction proceeds very slowly due to a lack of mixing and low L/S ratio
- \blacktriangleright HCO₃⁻ can accumulate prior to the precipitation of calcite
- Expected evidence of the occurrence of this reaction in the TMF includes controlled HCO₃⁻ concentrations, temporarily depressed Ca²⁺ concentrations, and rising SO₄²⁻ and Na⁺ values

AREVA

HC Geochemical Model

Major Ion Pore Water Concentrations in TMF08-03 Indicating Calcite Precipitation below 384 masl

HC Geochemical Model

Sample Elevation vs Sediment HC_{11-20} (ug/g) and Pore Water $HCO_3^{-}(mg/L)$ for Bore Hole TMF08-03

AREVA

HC Geochemical Model

Calcite Formation in Lower Tailings Containing 560ug/g Residual HC, TMF08-03 SA-14 376.0 masl

Mo Geochemical Model

- MoO₄²⁻ precipitates with Fe³⁺ at pH 4 potentially as the mineral ferrimolybdite in the tailings preparation process
- ▶ At the terminal pH of 7.5, ferrimolybdite begins to re-dissolve
- After disposal in the TMF the dissolution continues to completion
- Rising MoO₄²⁻ values reach saturation with powellite providing a long term Mo concentration upper bound

Mo Geochemical Model

Overall Waste Water Management Mo Mass Balance for McClean Lake Operation January to October 2004.

Process Location	Mo Concentration (mg/L)	Mo Mass (kg/day)	Mo Removal Efficiency (%)
Tailings preparation: feed	<u>1</u> . 89.0 238.8		
discharge pH 4.0	0.6	1.7	99.3
discharge pH 7.5	26.0	60.1	74.8
<u>Water Treatment</u> <u>Plant</u> : feed	12.2	62.5	
discharge	0.197	1.0	98.4
<u>Overall</u> : feed	89.0	238.8	
discharge	0.197	1.0	99.6

*measured at tailings thickener under flow

Mo Geochemical Model

 $\begin{array}{ll} \label{eq:constraint} \mathsf{Fe}_2(\mathsf{MoO}_4)_3 \cdot 6\mathsf{H}_2\mathsf{O} {\downarrow} \to 3\mathsf{MoO}_4{}^{2\text{-}} + 2\mathsf{Fe}(\mathsf{OH})_3 {\downarrow} + 6\mathsf{H}^+ \\ {}_{(\text{ferrimolybdenite})} & (\mathsf{ferrihydrite}) \end{array} \\ \\ \mathsf{CaSO}_4 \cdot 2\mathsf{H}_2\mathsf{O} {\downarrow} \to \mathsf{Ca}^{2\text{+}} + \mathsf{SO}_4{}^{2\text{-}} + 2\mathsf{H}_2\mathsf{O} \\ {}_{(\text{gypsum})} & (\mathsf{gypsum}) \end{array} \\ \\ \\ \mathsf{Ca}^{2\text{+}} & + \mathsf{MoO}_4{}^{2\text{-}} \to \mathsf{CaMoO}_4 {\downarrow} \end{array}$

(powellite)

Overall:

AREVA

Mo TOVP Aging Test

(Jan. 30, 2010 to July 29, 2011)

Presentation title – Presenter/ref. - 18 February 2012 - p.48

Mo Geochemical Model

Sample Elevation vs 2008 Mo Pore Water Concentration

AREVA

AREVA

Case Study #2

TMF Sediment Aging of Coarse Tailings – HCO₃⁻, Ca²⁺, Na⁺ and SO₄²⁻

Case Study #3

TMF Sediment Aging of Fine Tailings – HCO₃⁻, Ca²⁺, Na⁺ and SO₄²⁻

AREV

Conclusions

Confirmation of Engineered Tailings Geochemistry Concept

- 10+ years of TMF operation have verified that COCs are controlled to near constant values in tailings pore water
- the tailings COC pore water concentrations are independent of sediment COC concentrations
- geochemically, the sequestered COCs are characteristic of chemical/mineral phases and stable under TMF conditions
- investigative efforts continue concerning COC mineral identification (nano-scale structures) and their long term aging behaviour
- particle size segregation in placed tailings introduces spatial and temporal variations in geochemical observations