

Sullivan Mine: Water Collection Closure Plan vs. 10 yrs Post-Closure experience Authors: Michelle Unger, BSc. & Dave van Dieren, P.Eng

Description of Site Reclamation and Seepage Collection Systems

Post Closure Projections and Current Experience:

- Underground Mine filling, dewatering flows, water quality and metal loading
- Mine Area Seepage flows, water quality and metal loading
- Tailings Area Seepage flows, water quality and metal loading

Summary of Results

Sullivan Mine Location

Sullivan Mine History and Layout

Mine and Mill areas

Lead, Zinc and Silver

Operated 1909 - 2001

Primarily underground, some open pit 150 million tonnes ore

Production (tonnes):

Concentrate: 25.8 million Waste rock: 9.8 million Tailings: 122 million

Total area of disturbance: 1100 ha

Environmental Concerns: Acid Rock Drainage (ARD)

Sulphide oxidation:

Pyrrhotite and pyrite Principal Ore:

• Galena and sphalerite

ARD impacts to surface water and groundwater :

- mine workings;
- waste dumps;

Historic Photo of North and South Waste Dumps adjacent to Mark Creek

Historic Photo of No. 1 Shaft Waste Dump

Environmental Concerns: Acid Rock Drainage (ARD)

Sulphide oxidation:

Pyrrhotite and pyrite Principal Ore:

• Galena and sphalerite

ARD impacts to surface water and groundwater:

- mine workings;
- waste dumps; and
- tailings impoundments

Historic Photo of Tailings produced by Concentrator

Revised Decommissioning and Closure Plan 2000 Main Objectives:

- Wildlife habitat
- ARD collection and treatment for *perpetuity*

Reclamation progressive from 1990 to 2010

Review Reclamation Plan: Mine Site

- Source Control:
 - Rock from the Open Pit Waste Dump was placed in the Open Pit.
 - Waste dumps were capped with till and re-vegetated with grasses and legumes.
- Seepage collection:
 - Underground Mine reservoir
 - No.1 Shaft Waste Dump groundwater collection
 - Sullivan Creek surface and groundwater collection
 - Lower Mine Yard groundwater interception wells

Mark Creek: Before and After

Reclaimed Mark Creek Valley

North and South Waste dumps adjacent to Mark Creek Valley

Review Reclamation Plan: Mill Site

- Source Control Mill Area
 - Engineered cover systems placed on waste impoundments
 - Re-vegetated with grasses and legumes.
- Seepage Collection
 - Groundwater interception ditches keyed into bedrock/till surface
 - Shallow seeps and runoff collected in ditches
 - Water collected from all collection systems is stored in the ARD Pond, and treated in Teck's Drainage Water Treatment Plant (DWTP)

Tailings Reclamation – Before and After

Water Treatment Post Closure

DWTP built in 1979

- high density sludge process
- operates in the spring
- (~ 12 weeks) and fall (2 $\frac{1}{2}$ weeks)
- Dewater the u/g mine reservoir and ARD Pond in the spring
- Completely empty the ARD Pond in the fall

Post Closure Projections

ec

<u>COMINCO LTD.</u> <u>SULLIVAN MINE PROJECT</u> REPORT ON PRELIMINARY HYDROGEOLOGICAL EVALUATION

SCHEMATIC SECTION

U/G Mine filling projections

- Estimated void space between mine elevations from bottom of mine 2450 ft and max. operating elevation 3650 ft (initial filling)
- Operating range of reservoir is from 3550 ft and 3650 ft with a capacity of 625,000 m³
- Allowance of a 50 ft contingency freeboard

Post Closure Projections

U/G Mine filling projections

Water introduced into the mine 2 ways:

- Surface infiltration from subsidence area
- 2. Groundwater inflow

Infiltration rate 1.4M m³/yr assuming average precipitation

Subsidence area

Mine Filling Graph

Teck

Underground Mine Dewatering

U/G Mine Dewatering in subsequent years

Year	Volume m ³ /yr
2011	667,377
2010	382,312
2009	588,713
2008	627,926
Projected	1,400,000

Original prediction – dewater spring and fall Actual volume – dewater spring only

Compound	Predicted	Initial	2011 end
Zn mg/l	130	138	24
Fe mg/l	629	1,150	366
SO4 mg/l	11,115	9,030	5,730

Initial water worse than predicted except for SO4 With pumping water quality is better than predicted

Underground Mine Water Quality

Teck

Mine Area seepage collection -

- No. 1 Shaft waste dump
- Sullivan Creek
- Aquifer pumps in Lower Mine Yard

Predicted volume 940,000 m³/yr

Mine Area seepage collection –

- No. 1 Waste Dump
- Sullivan Creek
- Aquifer pumps in LMY

Predicted volume 940,000 m³/yr

Actual volume currently ~600,000 m³/yr

Volume: down immediately upon closure and decreased as reclamation progressed

Seepage Volume vs Time

Teck

Dissolved metals (mg/L)

No. 1 Shaft Waste Dump

- Metal concentrations: increasing especially Zn with decreasing volume
- Metal Loading: generally decreasing except when there is a flushing event

8000 7000 Fe-D - Zn-D 6000 5000 4000 3000 2000 1000 1/2/2008 3/27/1996 5/20/1999 4/7/2001 5/2/2002 8/1/2002 4/2/2003 2/1/2003 3/30/2007 5/22/2007 9/2/2008 1/7/2009 5/1/2009 3/31/2010 Sample Date 6/9/1997 2/2/2002 //30/2003 4/29/2004 5/29/2005 10/3/2006 4/24/2007 5/19/2007 3/30/2007 5/2/2008 9/30/2004 2/1/2007 5/3/2011

No. 1 Shaft Waste Dump

Lower Mine Yard

- Volume increased with additional aquifer pumps which has reduced impacts on Mark Cr. by 100 times since 1992
- Groundwater metal concentrations: increasing Fe and decreasing Zn from South Dump

Note log scale

Predicted volume 340,000 m³/yr avg. precipitation Actual volume average 500,000 m³/yr last 4 years

Tailings Area Water Quality

Summary

Predictions and Actuals

- Closure 2001
- Post reclamation conditions since 2007 (3 years of vegetation growth)
- Volumes are approx. 60% less than predicted (primarily u/g)
- Water quality better than predicted, the lime consumption is much lower than predicted

Projected Flow (m ³ /yr)		Actual (m ³ /yr)
U/G	1,400,000	600,000
Mine	940,000	600,000
Tailings	360,000	500,000
Total	2,700,000	1,700,000

Lime consumption		
Projected	6,025 t/yr	
Average (2008 – 2011)	2,157 t/yr	

Summary

Volume trends

- Mine area seepage decrease since reclamation of No. 1 Waste Dump
- Tailings area seepage slightly lower than pre reclamation, too early to see a significant difference
- Total seepage volume no significant trend

2.5 ----- Mine Area Seepage 2 Volume Mm3/yr 1.5 1 0.5 0 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

Seepage Volume vs Time

Summary

Metal loading

- U/G Significant decreasing trend, expect to level off
- Mine area seepage decreasing trend primarily due to reclamation of No. 1 Waste Dump
- Tailings area seepage no significant trend
- Total loading no trend at this point

Metal Loading vs Time

Questions??

Elk on Reclaimed Pond