Evolution of East Pit Water Chemistry Predictions at Huckleberry Mine: Effect of a Wall Failure and Mine Plan Changes

Stephen Day, SRK and Ron Roubichard, Huckleberry Mines Limited

18th ANNUAL BRITISH COLUMBIA-MEND ML/ARD WORKSHOP Dec 1 and 2, 2011

Acknowledgement

Huckleberry Mines Limited

Outline

- History of Huckleberry Mine.
- Geological and geochemical background.
- Pit water chemistry prediction methods.
- Results of modelling.

Location

History

- 1962 Copper discovered by Kennco Explorations
- 1960s to 1970s Drilling and resource estimation (Main Zone)
- Early 1990s Continued exploration (East Zone).
- 1995 Project Approval Certificate
- March 1996 Construction started.
- October 1997 Officially opened.
- December 1999 BC ARD Workshop Presentation
- 2014 Current projected end of mining

srk consulting

Non-PAG beach

PAG tails, rock Main Zone Pit, PAG Rock

East Zone Pit

non-PAG rock

fill

General Description

- Porphyry deposit
- Two open pits
- 21,000 tonnes/day
- 0.5 % Cu, 150 ppm Mo
- Concentrates
 - Copper to port at Stewart, BC
 - Molybdenum to Vancouver, BC
- 12.4 M tonnes of remaining reserves at 0.327% Cu

Environment

- Average elevation 1,036 m.
- Average annual precipitation (1997 to 2008) 1043 mm (57% as snow).
- Average annual temperature 3.0°C.

Geology

- Deposit type
 - Calc-alkalic porphyry.
- Main geological hosts
 - Biotite granodiorite stock intruding and hornfelsing andesite.
- Hydrothermal alteration
 - Potassic (biotite) dominates
- Important minerals
 - Sulphides pyrite, chalcopyrite, molybdenite.
 - Carbonates calcite.
 - Other gypsum.
- Surficial geology
 - glacial till, colluvium

East Zone Pit Walls ML/ARD Potential

W/Van-sx0.van.na.srk.adprojects/01_SITES/Huckleberry/1CH002.016_2010_Expansion/2003_Geochemical Characterization/Data_Comparisons/Past_WR_New_Waste_Rock(Olf_vs_New_WR_1CH002.016_rev01_SJD

East Zone ML/ARD Potential

Pit Water Quality Model

- Objective
 - Compare water management and closure alternatives.
 - Evaluate sensitivity to input assumptions.
 - Decision-making tool.
- Factors Considered at Various Times:
 - Changes in pit geometry due to mine design changes.
 - Uncertainty in groundwater inflows.
 - Use of a plug dam to raise pit water level.
 - Use of external flows for fast flooding (eg tailings supernatant).
 - Removal of excess rubble from pit walls.
 - Effect of ARD onset lag time.
 - Effect of changes in inflow chemistry.

Open Pit Modeling

Model Construction

- Simple conservation of mass.
- Spreadsheet.
- Zero order reaction rates.
- Complete mixing, stratification not considered.
- Approximation of wall geometry, inflow rates by equations.

Water Balance

- Typical values
 - Groundwater 1x10⁶ m³/year.
 - Run-in 0.6x10⁵ m³/year.
 - Total Precipitation 0.8x10⁵ m³/year.
 - Evaporation 1×10^5 m³/year.

2002 Comparative Results

Time (a)

2005 Evaluations

Non-zero Order Oxidation

Wall Covers (60%)

Time (year)

→ srk consulting

June 22, 2007 Wall Failure

Model Updates - 2007

- 8.6 million m³ of wall failure rubble (5.3 million m³ above flood level).
- Construction of plug dam with a crest at elevation 1040 m.
- Placement of PAG pit waste in the Pit.
- Placement of PAG tailings in the Pit.
- Final water cover of 2 m.

2007 Model Updates - Results

- Rapid filling of pit.
- Acidic water with copper concentrations decreasing from about 30 mg/L stabilizing to 2 mg/L in long term (century scale) due to decay.

Conclusions

- Pit wall model provided a simple method to evaluate relative effects of remedial measures including fast flooding and pit wall management.
- Prior to pit wall failure, predicted pit water chemistry was sensitive to alkalinity load from inflows and acid generation rate assumptions.
- Leaching of wall failure rubble led to prediction that pit water chemistry is likely to be acidic.

rk consulting

