RioTinto

Progress in Remediating ARD-Contaminated Groundwater at Bingham Canyon Mine, Utah, USA

Kennecott Utah Copper

Presentation Outline

- Nature of Problem
- Regulatory Framework
- Containment and Remediation
- Water Treatment
- Cleanup Timeframe
- Questions

Acknowledgements

GEOCHIMICA

RioTinto

HBC International

Technology & Innovation

Nature of Problem

Rio Tinto

Kennecott Utah Copper (KUC) Bingham Canyon Mine

Regulatory Framework

Rio Tinto

Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA)

- 1986 EPA begins Preliminary Site Investigation
- 1994 EPA proposes site for National Priority List (NPL)
- 1995 Memo of Understanding between EPA, State of Utah, and Kennecott Utah Copper (KUC)
- 1998 RI/FS completed (Site Investigation)
- 2000 ROD issued (Approval of Cleanup Plan)
- 2002 RDRA completed (Design and Implementation)
- 2008 Consent Decree issued (Legal Agreement)
- 2008 NPL proposal withdrawn

KIO

N

Natural Resource Damage (NRD)

- 1986 State of Utah files NRD claim for groundwater impacted by ARD
- 1992 Initial NRD settlement rejected after Jordan Valley Water Conservancy District (JVWCD) intervenes
- 1995 NRD settlement approved; KUC provides funding to "restore, replace, or acquire equivalent"
- 2004 State of Utah approves a joint KUC/JVWCD groundwater treatment project
- 2006 KUC commissions Reverse Osmosis (RO) water treatment plant for Zone A
- 2012 JVWCD anticipated to open KUC funded RO water treatment plant for Zone B

Remedies Summary

- EPA through CERCLA:
 - Maintain source controls and provide plume
 - containment through pumping
 - Remediate aquifer through pumping and monitored natural attenuation (MNA)
 - Treat extracted groundwater and dispose of treatment residuals
- State of Utah through NRD:
 - Construct and operate a RO water treatment plant for Zone A
 - Fund construction of RO water treatment plant for Zone
 B to be owned and operated by JVWCD
 - Each plant to produce 3,500 acre-feet/year for 40 years

Rio Tinto

Containment and Remediation

2010 Sulfate Concentrations

- New Sulfate Extraction Well
- JVWCD Extraction Wells

And the second of the second second

MAIT

Acidic Extraction Wells

	ECG1146	BSG1201	BSG2784
Installed	1995	2003	2008
Material	Stainless Steel	Stainless Steel	Stainless Steel
Diameter	18-inch	18-inch	18-inch
Total Depth	760 ft bgs	752 ft bgs	870 ft bgs
Screen Intervals	500-700 ft bgs	500-740 ft bgs	490-600 ft bgs 700-850 ft bgs
Static Water Level	390 ft bgs	460 ft bgs	420ft bgs
Pumping System	200 HP SS Submersible	200 HP SS Submersible	200 HP SS Submersible
Average Pumping Rate	670 gpm	620 gpm	620 gpm
Production 5 Year Rolling Average	2,100 to 2,600 acre-feet/year		

Sulfate Extraction Wells

	BFG1200	B2G1193	LTG1147
Installed	2001	1998	1995
Material	Stainless Steel	Stainless Steel	Carbon/Stainless
Diameter	18-inch	18-inch	16-inch
Total Depth	820 ft bgs	1,070 ft bgs	605 ft bgs
Screen Intervals	420-800 ft bgs	450-1060 ft bgs	400-590 ft bgs
Static Water Level	420 ft bgs	450 ft bgs	420 ft bgs
Pumping System	350 HP SS Submersible 350 HP Booster	350 HP SS Submersible 350 HP Booster	200 HP SS Submersible 250 HP Booster
Average Pumping Rate	1,400 gpm	1,500 gpm	400 gpm
Production 5 Year Rolling Average	3,500 to 3,800 acre-feet/year		

RioTinto

Pump and Treat Strategy

Reverse Osmosis Treatment Plant

Configuration	Two X 2-stage skids
Membranes	Hydranautics ESPA2 (Spiral Wound Polyamide)
Pressure Vessels	Protec and CodeLine
Feed Rate	3,000 gpm to Membranes
Recovery Rate	71 to 74%
Remineralization	200 gpm
Production Rate	2,400 gpm
Production Goal	3,500 acre-feet/year

Tailings Line Management Criteria

- Compliance point is the North Splitter Box (located north of the Copperton Concentrator)
- Neutralization potential (NP) in a given month should be either; greater than or equal to the Copperton Concentrator tailings NP, OR at least 5 t CaCO₃ eq/kt
 - Evaluated as a six-month rolling average
- Aqueous alkalinity should be greater than or equal to 10 mg CaCO₃ eq/L at least 90% of the time
 - Evaluated as a six-month rolling average
- Aqueous pH should be greater than or equal to 6.7 at least 90% of the time
 - Evaluated per calendar year

RioTinto

Column Leaching Tests and Geochemical Modeling Summaries

- Performed in 1990's as part of the RIFS process to:
 - Evaluate remedial options and assist with designing remedial pumping network
- Column Leaching Tests:

- Approximately 40 pore volumes, equivalent to approximately 800 years
- Geochemical Modeling:
 - Five different models were developed to evaluate lime demand, with a total of 9 different simulations
 - Extrapolation column data, extrapolation of data from complete recovery wells, expanded 1D geochemical model, empirical rinse curve model, and an extended 1D advection-dispersion model with mass extraction

Calculated Lime Demand

RioTinto

