Selection of ARD treatment alternatives to meet water quality criteria

Paul Ziemkiewicz, PhD, Director

West Virginia University Water Research Institute Morgantown WV Bruce Leavitt, PE PG, Consulting Hydrologist Washington PA

> <u>pziemkie@wvu.edu</u> 304 293 6958

West Virginia University

Important goals of the US Federal Clean Water Act:

- A. protect waters from impairment (§402 CWA) active, point sources-increasingly stringent end of pipe limits
- B. restore impaired waters (§303 CWA) to their designated use legacy or non-point sources-abandoned mines, agriculture, forestry
- This places focus on restoring the maximum miles of stream to their designated use
- Most stream impairment results from multiple discharges
- Need to rationalize treatment to recover the maximum stream values/\$

Strategy for watershed restoration:

- **1**. Funded by mitigation or public programs
 - Mitigation=compensation for disturbance
- 2. Develop watershed based mitigation plans
- Identify environmental benefits of mitigation projects
- 4. Identify technologies and costs of projects
- 5. Prioritize projects
- 6. Identify project partners/sponsors
- 7. Install projects
- 8. Document environmental benefits

Watershed Improvement Planning:

- Develop an inventory of watershed based remediation plans, those plans would include:
 - Description of Problem Areas
 - Remediation strategy
 - Anticipated level of improvement of aquatic resources
 - cost

Quantifying costs and benefits

- <u>STEP 1</u> Select a Targeted Watershed (10 Digit HUC scale).
- STEP 2 Describe the current condition landscape (CEUs and LEUs).
- <u>STEP 3</u> Design alternative placement of treatment technologies (idealized at-source vs. strategic alternatives with mix of in-stream and at-source).
- STEP 4 Calculate REUs associated with each alternative.
- <u>STEP 5</u> Calculate \$ benefits and Net Present Values associated with each Alternative.
- <u>STEP 6</u> Implement monitoring program designed to quantify benefits of restoration plan.

Step 2 – Current Conditions Middle Cheat R.

West Virginia University

EcoUnit Concept

= a measure of the <u>functional</u> significance of a measurable unit of stream (length or surface area).

EU = Functional Weights x Stream Segment Length (km)

calculated for all stream segments within a defined area
 scalable from stream segment to whole watershed
 decision making "currency"

Example Restoration Goals:

Brook Trout Reproductive Habitat EcoUnit = stream length (m) weighted by its potential value as habitat for brook trout spawning and juvenile recruitment (Petty and Thorne 2005; Jeffers et al. 2008).

Warmwater Fishery EcoUnit = stream length (km) weighted by its potential value as habitat for smallmouth bass (Merovich and Petty 2007).

Invertebrate Diversity EcoUnit = stream length (km²) weighted by its potential to support diverse macroinvertebrate assemblages (Merovich and Petty 2007).

Organic Matter Processing EcoUnit = stream length (m) weighted by its potential value in converting coarse particulate organic matter to biomass.

West Virginia University

EcoUnit Calculation

- HEU = SL x EP = Historic EUs CEU = SL x EP x EC = Current EUs LEU = HEU - CEU = Lost EUs REU = LEU x ER = Restorable EUs FEU = CEU + REU = Future EUs
- SL = segment length
- EP = ecological potential weight
- EC = ecological condition weight
- ER = ecological restorability weight

Current Conditions in Middle Cheat

	EcoUnits (miles)							
	Coldwater Warmwater Diversity Fishery Fishery							
HEUs	332	258	50	326				
CEUs	235	132	28	171				
LEUs	96	126	21	155				

STEP 3 – Alternative Treatment Strategies (technology and placement)

- 1. In-stream, headwater dosing
- 2. Full at-source dosing
- 3. Full at source passive with in-stream finishing dosers
- 4. Strategic mixture of the above technologies

Step 4 – Calculate REUs and FEUs for various alternatives

Future Condition – Ideal

West Virginia University

Future Condition – Alt 4

Legend

Alternatives 1-3 Treatment Locations

Alternative 4 Treatment Locations

Future Condition Alternative 4

(Div)

Middle Cheat Streams

REUs in Middle Cheat

	R	Restorable EcoUnits (miles)						
	Coldwater Warmwater Overa							
Alternative	Diversity	Fishery	Fishery	Fishery				
Ideal	41	27	21	56				
1	13	0.5	14	19				
2/3	31	10	21	38				
4	19	4	19	25				

Step 5 – Calculate NPVs for each Alternative

		(2007 dollars, discounted at 3%	»)	
Alternative	1 Year Project	5 Year Project	10 Year Project	20 Year Project
1	1,628,356	7,681,117	14,306,916	24,952,605
2	1,768,628	8,342,793	15,539,360	27,102,103
3	1,528,350	7,209,380	13,428,254	23,420,136
4	286,340	1,350,693	2,515,813	4,387,814

Annual Costs, Present Value*

- NPV = (total benefit total cost) x annual discounting factor.
- Fishery benefits = \$28,000 / fishery mile (from USFWS 2006).
- Benefits (from restored fishery miles) begin accruing in year 3.
- Parentheses indicate a net cost to restoration.

Alternative	1 Year Project	5 Year Project	10 Year Project	20 Year Project
1	6,878,356	12,931,117	19,556,916	30,202,605
2	13,468,628	20,042,793	27,239,360	38,802,103
3	20,604,987	26,286,017	32,504,891	42,496,773
4	3,876,622	4,940,975	6,106,095	7,978,096

Total Cost over Project Lifetime, Present Value*

(2007 dollars, discounted at 3%)

Net Present Value of Alternatives, Overall Fishery

(2007 dollars, discounted at 3%)

Alternative	Total 1 Year	Total 5 Year	Total 10 Year	Total 20 Year
1	(6,878,356)	(11,453,887)	(15,888,246)	(23,004,288)
2	(13,468,628)	(17,111,414)	(19,959,343)	(24,517,941)
3	(20,604,987)	(23,354,638)	(25,224,875)	(28,212,612)
4	(3,876,622)	(2,985,953)	(1,250,840)	1,548,428

West Virginia University

Current Conditions: WVSCI

Mining: R ² = 0.69; p < 0.003					
	Estimate	R ²			
Intercept	75.692				
asin√%SM	-14.131	0.21			
logNPDES (DM)	-5.930	0.48			

Developed: R² = 0.80, p = 0.0003

_	=	
	Estimate	R²
Intercept	76.15	
200M Structures	-0.51	0.64
Log NPDES (Sewage)	-4.25	0.16

Combined: R² = 0.71; p < 0.0001

	Estimate	R²
Intercept	74.27	
asin√%SM	-21.36	0.19
200M Structures	-0.54	0.52

West Virginia University

Watershed Futures Planner: Stream Condition Index: Reduced Residential Effect

Current

Current w/ RRE

RRE + All permits

West Virginia University

Treatment Options

- At source lime dosing with sludge collection and disposal
- In stream dosing:
 - Limestone sand dump stations
 - Lime dosers

At source passive treatment

At-source lime doser

Sludge Cleanout

In Stream Dosing: Middle Fork Limestone Sand Station

In Stream Dosers: Maryland

Boxholm

Pumpkonsult

Aquafix

West Virginia University

In Stream Lime Dosing: West Virginia

West Virginia University

On Site Passive Treatment Open Limestone Channel: West Virginia

Indirect treatment Slag Leach Bed: Ohio

Treatment technology selection: AMDzine

Compliance with CWA §402 permitting conditions:

1.42 mg/L

1.0 mg/L

- pH 6-9
- Fe_{total}
- Mn_{total}
- Al_{total} 0.43 mg/L

In order to meet compliance requirements all systems are designed to meet <u>maximum</u> flow

AMDzine

- AMD is treated in series by separate technologies
- AMDzine evaluates how those technologies are assembled to meet
 - a specific WQ standard
 - at a particular site
- CapX and OpX costs generated separately
- Currently being used to meet compliance with a Federal Court Order

Input: site information and regulatory standards

Site Name	A1				
Discharge Standards		(alculated Data		
рН	1	Iron Load (Ferrous)	lbs/day		
min	6.00	min	1.202		
max	9.00	max	360.479		
Iron (mg/L)	1.42	average	30.040		
Aluminum (mg/L)	0.43		mg/L		
Manganese (mg/L)	1	Alacidity	444.77		
		Fe ++ acidity			Site data
			268.62	Height of discharge	above stream (ft)
Raw Wat	er Data I		208.02		
Flow (gpm)	1.00		9.10	is this a pumped dis	scharge (Y/N)
min	1.00	pHAcidity	158.11	Area of land below	discharge
max	300.00	Total Acidity	880.61	elevation with slon	e less than 10%
Average	25.00				
pri average	2.50	Sludge injection head	0	within 1000 feet of	discharge (acres)
Actally (not) (mg/L)	3.00			Single Phase Power	r
Fe Total (mg/l)	3.00			Three phase power	
Fe Dissolved (mg/L)	100.00				
Fe Ferrous (mg/L)	100.00			Distance to 3 phase	power
Al (mg/L)	80.00			Elevation of Sludge	Discharge
Mn (mg/L)	5.00	Carbon Dioxide Acidity	108.11	elevation of sludge	oump
Sulfate (mg/L)	2500.00			Longth of cludgo ni	<u>pp</u>
Calcium (mg/L)	300.00			Length of sludge pr	pe
Magnesium (mg/L)	65.00			Surface area	
DO (mg/L)	0.50			Fresh water availab	ole (gpm) up slope
1 hr. Aeration Test					
Initial pH	2.50	West Virginia University		Water Research I	nstitute
Ending pH	3.00	2 /			

Ν

The AMDzine decision tree:

		Unit
	Passive pH adjustment	Appropriate
0	Anoxic Limestone Drain	FALSE
0	Open Limestone Channel	FALSE
0	Vertical flow pond (reducing)	FALSE
0	Vertical flow pond (auto siphon)	FALSE
0	limestone leach bed "D"	FALSE
0	limestone leach bed "M"	FALSE
0	Aerobic wetland	FALSE
0	Anaerobic wetland	FALSE
0	Steel slag bed	TRUE
0	Pre Aeration needed O ₂ lbs/hr	
0	Stair step pre-aerator	TRUE

- 0 Sluce pre-aerator
- 1 Trompe pre-aerator
- 0 Diffusion pre-aeration
- 0 Mechanical pre-aeration

0	Post Aeration needed O ₂ lbs/hr	
0	Stair step aerator	TRUE
0	Sluce aerator	TRUE
0	Trompe aeration	TRUE
0	Hydrogen peroxide (lbs / month)	FALSE
0	Diffusion aeration	TRUE
0	Mechanical aeration	TRUE
0	Settling pond (detention time hr)	FALSE
0	Clarifier	FALSE
0	Semiactive pH adjustment	
0	Doser (quick lime)	FALSE
0	Doser (hydrated lime)	FALSE
0	Sodium Hydroxide	FALSE
0	Active pH adjustment	
0	Hydrated lime (std)	FALSE
0	Hydrated Lime (high density)	FALSE

West Virginia University

TRUE

TRUE

TRUE

TRUE

Two strategies for treating the same not so bad water -capX only

Red highlight indicates WQ standard is not met

					Area			Raw WQ		
		Q max (gpm)	In	stalled	Used	рН	Acidity	Fe	Mn	Al
		300		Cost	ft2	6.5	17.2	3.0	5.0	4.0
-	Unit 1	Stair step pre-aerator	\$	110	135	7.0	17.2	3.0	5.0	4.00
	Unit 2	Vertical flow pond (reducing)	\$	276,370	48,036	7.1	14.5	3.0	5.0	0.48
	Unit 3	Trompe aeration	\$	1,113	36	7.1	14.5	3.0	5.0	0.48
	Unit 4	Settling pond	\$	11,770	1,400	7.1	14.5	0.9	1.0	0.48
	Unit 5	limestone leach bed "M"	\$	105,330	23,528	7.1	0	0.1	0.4	0
	Unit 6									
	Final WQ					7.10		0.90	1.00	0.00
l	Target WQ					6.00		1.42	1.00	0.43
		TOTAL	\$	394,693	73,136					
		Acres			1.68					
					Area			Raw WQ	S	
				Installed	Used	pН	Acidity	Fe	Mn	AI
				Cost	ft2	6.0	14.5	3.0	5.0	4.0
-	Unit 1	Trompe pre-aerator	\$	27,165	889	5.5	13.1	3.0	5.0	4.00
	Unit 2	Doser (hydrated lime)	\$	116,722	1,800	7.5	0.0	3.0	5.0	4.00
	Unit 3	Settling pond	\$	11,770	1,400	7.5	0.0	0.9	1.0	0.48
	Unit 4	Settling pond	\$	11,770	1,400	7.5	0.0	0.9	1.0	0.48
	Unit 5	Settling pond	\$	11,770	1,400	7.5	0.0	0.9	1.0	0.48
	Unit 6									
ſ	Final WQ					7.50)	0.90	1.00	0.48
	Target WQ					6.00)	1.42	1.00	0.43
		TOTAL	\$	179,198	6,889					
		Acres			0.16	5				
147	+ Virginia University	/ Mater Pec	oarch	nInstituto						29

Two strategies for treating the same very bad water-capX only

Red highlight indicates WQ standard is not met

				Area			Raw WQ					
		Q max (gpm)	Installed		Used	pН	Acidity	Fe	Mn	Al		
 Conventional approach stair step aerator hydrated lime doser settling ponds residual aluminum 		300	Cost		ft2	2.5	880.6	300.0	5.0	80.0		
	Unit 1	Stair step aerator	\$	770	45	2.5	772.5	300.0	5.0	80.00		
	Unit 2	Doser (hydrated lime)	\$	116,722	1,800	7.5	0.0	300.0	5.0	80.00		
	Unit 3	Settling pond	\$	11,770	1,400	7.5	0.0	0.9	1.0	0.48		
	Unit 4	Settling pond	\$	11,770	1,400	7.5	0.0	0.9	1.0	0.48		
	Unit 5											
	Unit 6											
	Final WQ					7.50)	0.90	1.00	0.48		
	Target WQ					6.00)	1.42	1.00	0.43		
		TOTAL	\$	141,032	4,645							
		Acres			0.11							
					Area			Raw WQ				
		Q max (gpm)	In	stalled	Used	рН	Acidity	Fe	Mn	AI		

		Q max (gpm)	lı lı	nstalled	Used	рН	Acidity	Fe	Mn	Al	
Conventional approach stair step aerator 		300		Cost	ft2	2.5	880.6	300.0	5.0	80.0	
	Unit 1	Stair step pre-aerator	\$	110	135	3.0	772.5	300.0	5.0	80.00	
	Unit 2	Doser (hydrated lime)	\$	116,722	1,800	7.5	0.0	300.0	5.0	80.00	
 hydrated lime doser 	Unit 3	Settling pond	\$	11,770	1,400	7.5	0.0	0.9	1.0	0.48	
settling ponds	Unit 4	limestone leach bed "M"	\$	105,330	23,528	7.5	0	0.1	0.4	0	
• add LLB to scavenge	Unit 5										
final aluminum	Unit 6										
linal aluminum	Final WQ					7.50)	0.09	0.43	0.00	
	Target WQ					6.00)	1.42	1.00	0.43	
		TOTAL	\$	233,932	26,863						
		Acres			0.62						
	West Virginia University			Water Research Institute						30	

Step 6 – Design and initiate monitoring program

NEW TECHNOLOGY SEGMENT: PRE-TREATMENT AERATION USING A TROMPE

Bruce Leavitt PE PG, Consulting Hydrogeologist Washington, Pennsylvania

Aeration

- Most mine drainage treatment facilities require aeration for iron oxidation.
- $Fe^{2+} + \frac{1}{4}O_2 + H^+ \rightarrow Fe^{3+} + \frac{1}{2}H_2O$
- The time required for this reaction to occur is dependent on oxygen transfer to the water and the pH of the water.

Effect of pH

- The higher the pH the faster iron is oxidized.
- As iron is oxidized the pH is lowered lengthening the time required for oxidation.
- This increase in detention time requires a commensurate increase in pond size.

Effect of Carbon Dioxide

- Mine drainage from underground mines frequently contains excess carbon dioxide.
- The effect of this excess carbon dioxide is to lower the pH of the raw water.
- Aeration of mine water will remove the excess carbon dioxide and could increase pH
- Best to lose the CO2 prior to adding base

Aeration Removes CO_2 and Increases pH H⁺ + HCO₃⁻ \leftrightarrow H₂O + CO₂(g)

Aeration Removes CO_2 and Increases pH H⁺ + HCO₃⁻ \leftrightarrow H₂O + CO₂(g)

West Virginia University

Improving the efficiency of aeration: CO2 stripping, ferrous oxidation

How to get oxygen to the upstream end of the treatment system

West Virginia University

Head drop is rarely at the upstream end of the treatment system where you need it

Trompe History

Discovered in 17th century Italy.
Defining component of the Catalan Forge
Developed 1 to 16 oz pressure

Trompe History Continued

- Rediscovered by Charles Taylor, Canada
- Ragged Chutes Compressor delivered 128 psi to the area mines
- Was in continuous operation for over 70 years with only two maintenance shutdowns.

Re-re discovered by Bruce Leavitt in 2010

West Virginia University

A trompe passively generates pressurized air that can be moved uphill. Also, it only sees treated water

Fine Bubble Aeration Discs

West Virginia University

Iron removal: 37% without 62% with trompe

West Virginia University

Thank you

Paul Ziemkiewicz Water Research Institute West Virginia University pziemkie@wvu.edu

West Virginia University

Water Research Institute

46