ASTM D5744 Kinetic Test Method Status and Application

Kim Lapakko kim.lapakko@state.mn.us Minnesota DNR 20th Annual BC-MEND Workshop 4 -5 December 2013 ASTM D5744-13: Standard test method for laboratory weathering of solid materials using a humidity cell

- Kinetic test
 - Laboratory mine waste dissolution test
 - Mine waste drainage quality prediction
- Status
 - Most recent modification in 2013
- Application
 - Mine waste management

OUTLINE

- 1. Mine waste characterization introduction
- 2. ASTM D5744 development, rigor
- 3. ASTM D5744 method description
- 4. Kinetic test application
 - Reactivity
 - Rates of solute release

Note: Focus on waste rock

(1) MINE WASTE CHARACTERIZATION Introduction

- Solid-phase characterization
 - Ore deposit type (geoenvironmental modeling)
 - Visual examination (drill core logging)
 - Chemical analysis
 - Metal partitioning
 - Mineralogical/petrological analysis
 - Static tests (acid and neutralization potentials)

(1) MINE WASTE CHARACTERIZATION Introduction

Drainage quality = f(solid-phase characteristics)

- Short-term dissolution tests (soluble salts)
- Kinetic tests (long-term dissolution tests)
 Soluble salts, other mineral dissolution
- Geochemical modeling

(2) ASTM D5744 Development

WHAT?

 Detailed laboratory weathering test method Kinetic test for waste rock
 8 drafts from 1992-1996
 Reviewed in formal ASTM process

Practitioners, industry, academia

- Rigorous ruggedness testing
- Revisions 2007, 2013

(2) ASTM D5744 Development Ruggedness testing

• Intralaboratory and interlaboratory testing

68 samples from 6 different rock types

 Characterized: p. size, chemistry, mineralogy
 Comparative testing for 20 -265 weeks

• Results in 111 p. research report w/method

(2) ASTM D5744 Development

WHAT?

Formalized, robust waste rock dissolution test method

WHY?

- Provide detailed description of protocol
 - Based on existing methods (Lawrence 1990)
 - Provide guidance for new practitioners
 - Promote method consistency
 - Increase reproducibility of results

(2) ASTM D5744 Development

WHAT?

Formalized, robust waste rock dissolution test method

WHY?

- Provide detailed description of protocol
 - Provide guidance for new practitioners
 - Promote method consistency
 - Increase reproducibility of results

WHO?

Bill White (USBM, USBLM) retired

(2) ASTM D5744 Development Waste Rock

OBJECTIVES

1) Determine relative degrees of reactivity

2) Provide rates for modeling soluterelease in field

Does NOT simulate field drainage.

(3) ASTM D5744 Description Start to Finish

- 3.1 Rock sample to be tested
- 3.2 Laboratory test protocol
- 3.3 Post-test rock analysis

(3.1) ASTM D5744 Rock Sample to be Tested

- Collection: methods, amount
- Storage
- Preparation
 - Drying
 - Screening
 - Size reduction
 - Splitting
- Analysis

(3.1) Sample Preparation Crushing

(3.1) Sample Preparation Sieving -1/4 inch

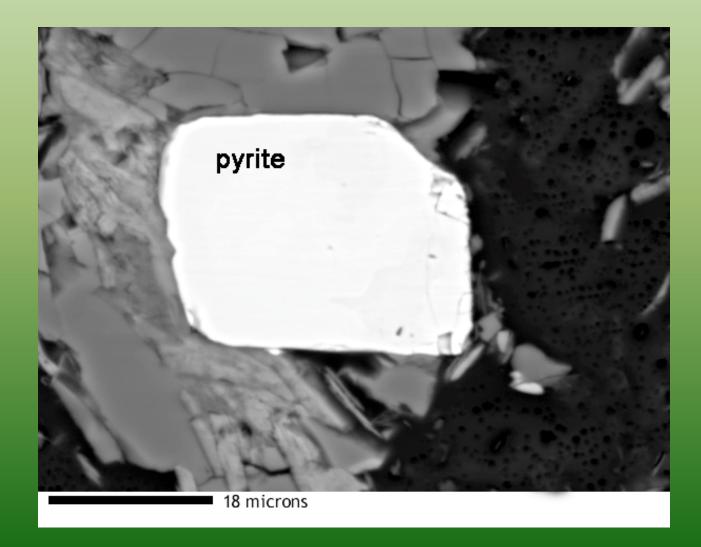
(3.1) Sample Preparation Splitting

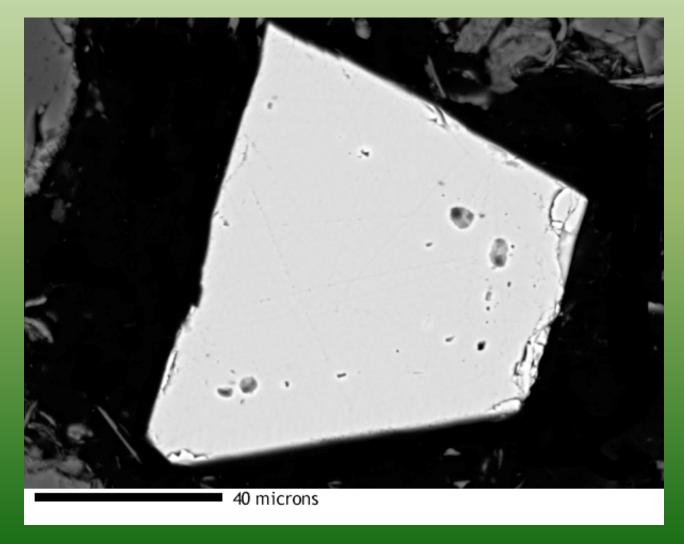
(3.1) Sample Preparation Crushed splits for analysis

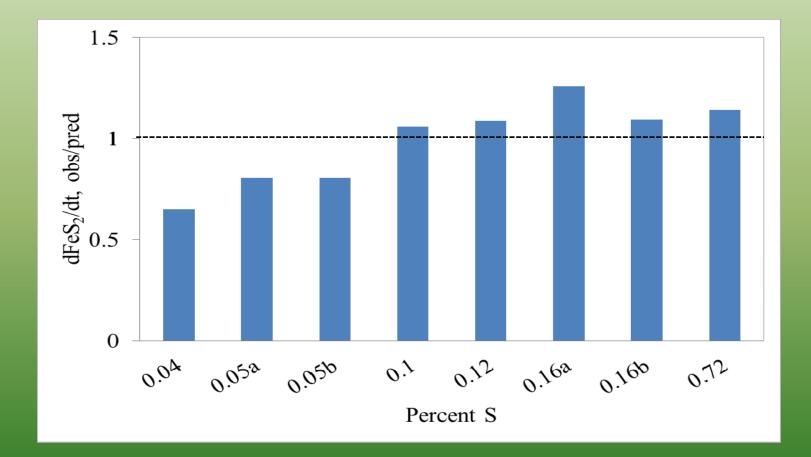
(3.1) Rock Sample Analysis

- Particle size distribution
- Chemistry

– S, S²⁻, CO₃, whole rock, trace element


- Mineral content & chemistry (e.g. carbonates)
- Size fractions
 - − S, S²⁻, CO₃
 - $-CO_3$
 - AP, NP mineral liberation


(3.1) Pyrite included:+2000 μm Archean greenstone rock


(3.1) Partially exposed pyrite:75-150 μm Archean greenstone rock

(3.1) Liberated pyrite:75-150 um Archean greenstone rock.

(3.1) Archean greenstone FeS₂ oxidation rate: Observed/Predicted (Williamson & Rimstidt 1994).

(3.2) ASTM D5744 Test Protocol 1 kg Archean greenstone rock, d < 6.25 mm

(3.2) ASTM D5744 Protocol

- Load cell, initial rinse (500 or 1000 mL)
- Rock reacts with water air for 1 week
- Controlled T, R.H.
- Rinse on seventh day (500 or 1000 mL)
- Determine drainage volume
- Analyze drainage

(3.2) ASTM D5744 Protocol Option A AIRFLOW

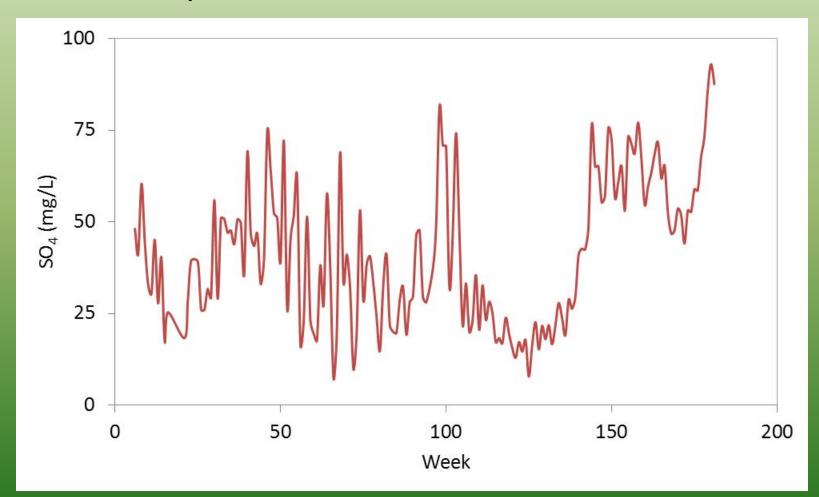
- Set at 1-10 L/min \pm 0.5 L/min
- 3 day dry air (R.H. < 10%)
 DO NOT DRY CELL COMPLETELY
- 3 day humidified air (R.H. ~95%)

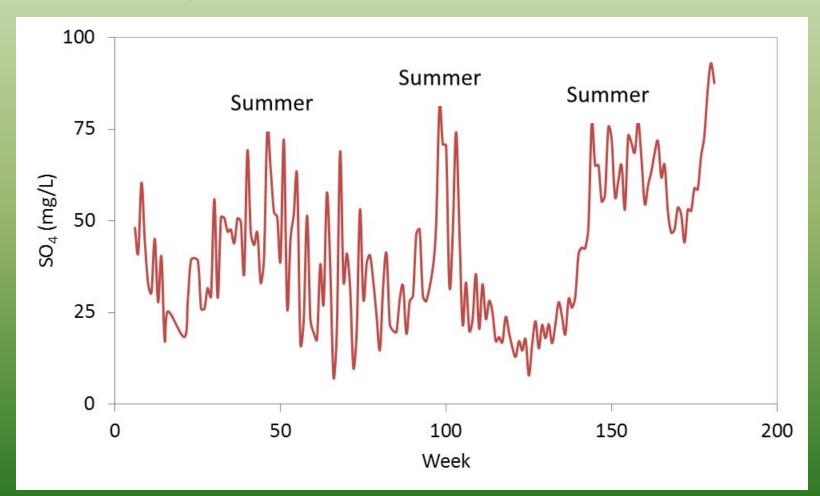
(3.2) ASTM D5744 Option A Array

(3.2) ASTM D5744 Option B

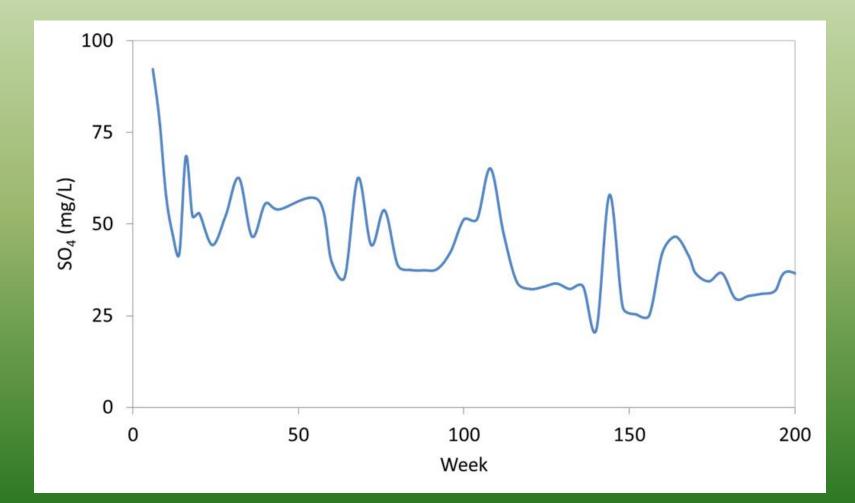
- No air flow
- Controlled T, R.H.
- More consistent and higher water content
- Enhanced acid neutralization for some rocks

(3.2) ASTM D5744 Option B


(3.2) ASTM D5744 Option B


(3.2) ASTM D5744 Humidity Cell

- Dissolution test procedure
 - Apparatus
 - Solid addition to cell
 - Airflow
 - Reaction T, RH, water retention
 - Leachant
 - Volume
 - Quality
 - Leachate analysis (solutes, frequency)

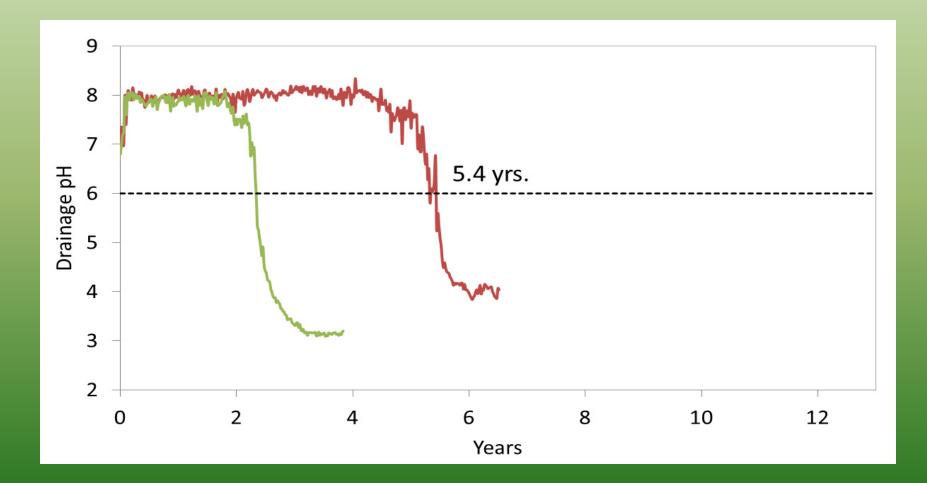

(3.2) Uncontrolled Temperature [SO₄] oscillates ~ factor of 10

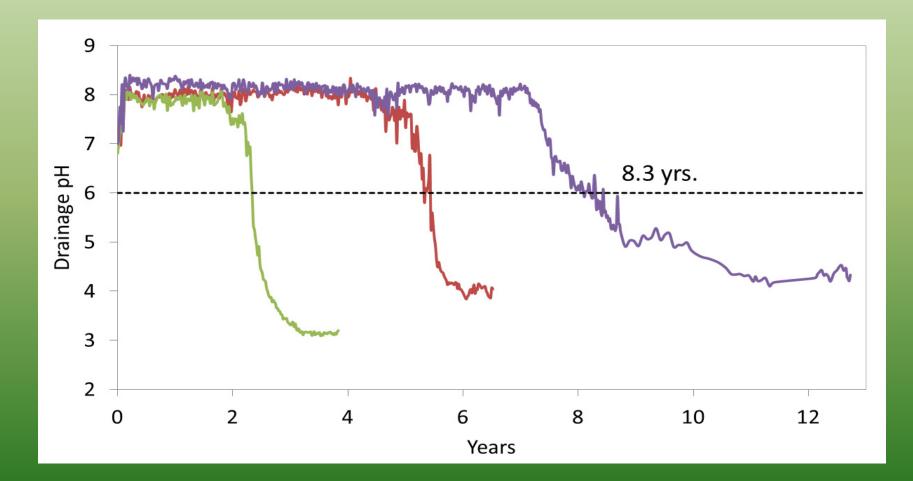
(3.2) Uncontrolled Temperature [SO₄] oscillates ~ factor of 10

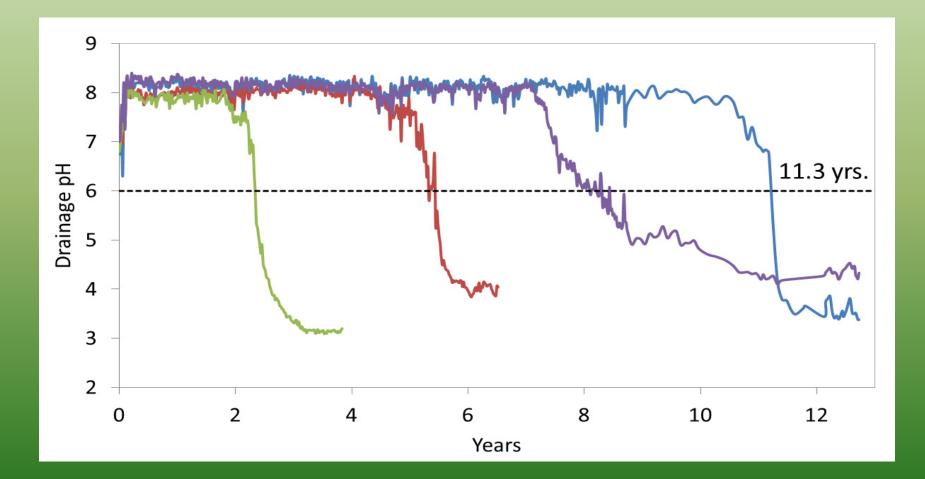
(3.2) Controlled Temperature

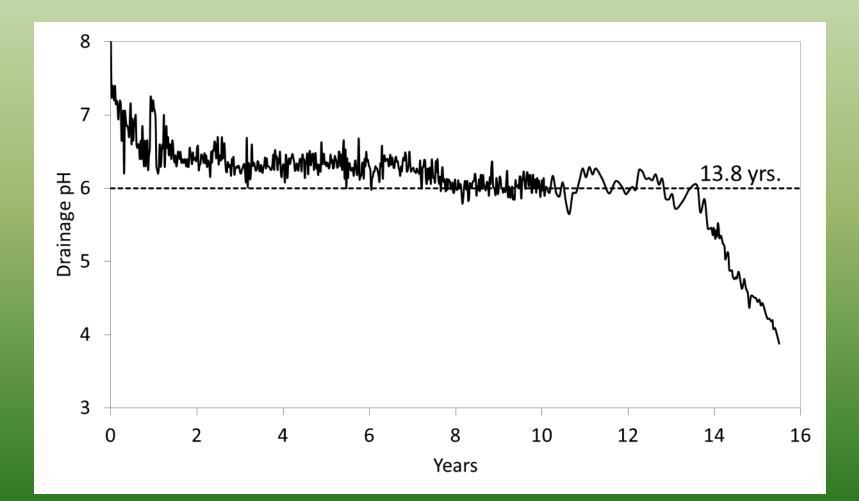

(3.2) Test Duration Dependent on Test Objectives.

- No prescribed duration
- Clearly define objectives with test design
- Examine data at regular intervals to see if objectives met.
- If (Ca + Mg)CO₃ content high, determination of reactivity might require long test

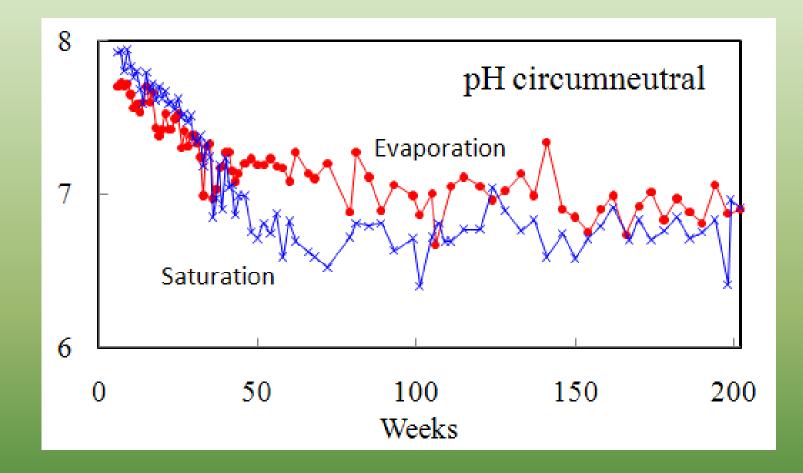

Data from different method used to demonstrate test duration.

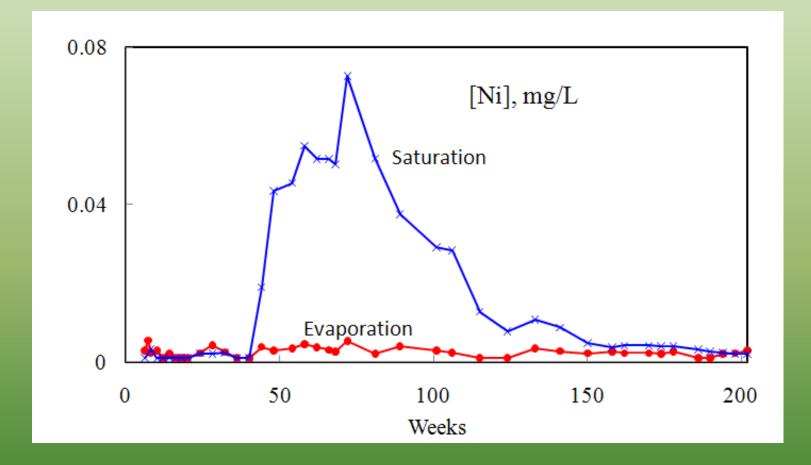

Test Duration: Time to acidification


Test Duration: Time to acidification


Test Duration: Time to acidification

Test Duration: Time to acidification


Test Duration: Time to acidification


Test Duration Describe Dissolution Behavior

DISCOVERY

How will rock dissolve?

Minimum pH: saturated ~ 0.2-0.3 units lower than evaporating

Max rates: dNi/dt (sat) ~ 20-25 dNi/dt (evap)

(3.3) ASTM D5744 Post-test rock analysis

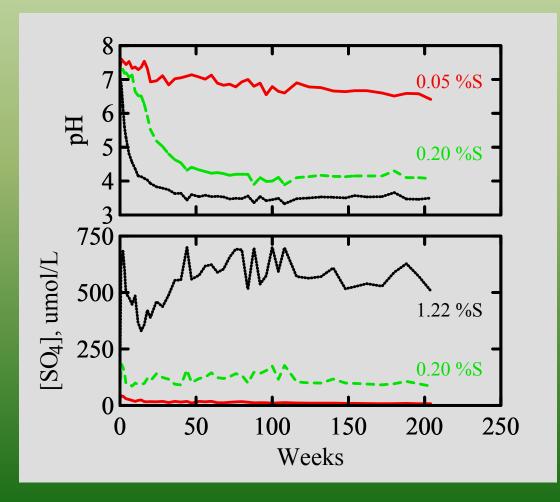
• Visual examination

• Leach extractions

Mineralogical examination

(4) Data Analysis

Kinetic test data contributions


4.1) Determine relative degrees of reactivity

4.2) Provide data to quantifying solute release rates

(4) Data Analysis:(4.1) Reactivity Examples

- Waste rock lithology
 - negligible carbonate
 - S present as sulfide
- **KINETIC TEST PROGRAM DESIGN**
 - Select multiple samples of variable S content
 - Subject to long-term (kinetic) dissolution testing
 - Compare results as f(%S)

(4.1) Archean Greenstone: As S content increased: drainage pH decreased and [SO₄] increased. ("Reactivity" increases with S)

(4.1) Archean Greenstone min pH (Reactivity) vs %S

154 – 204 week record 7 % S min pH 6 $0.04 - 0.05 \quad 6.4 - 6.8$ Hd mnminin 4 $0.10 - 0.16 \quad 5.4 - 5.9$ 0.20 - 0.40 3.6 - 3.93 0.59 - 1.22 3.0 - 3.32 0.4 0.8 1.2 0 % Sulfur

(4.1) Minimum pH vs. %S (Reactivity) Informs waste rock management Archean greenstone %S min pH Management 0.04-0.05 6.4-6.8 Meets pH standards¹ Slight pH adjustment? 0.10-0.16 5.4-5.9 0.20-0.40 3.6-3.9 Substantial mitigation **Rigorous mitigation** 0.59-1.22 3.0-3.3 ¹ Must check for potential problematic solutes

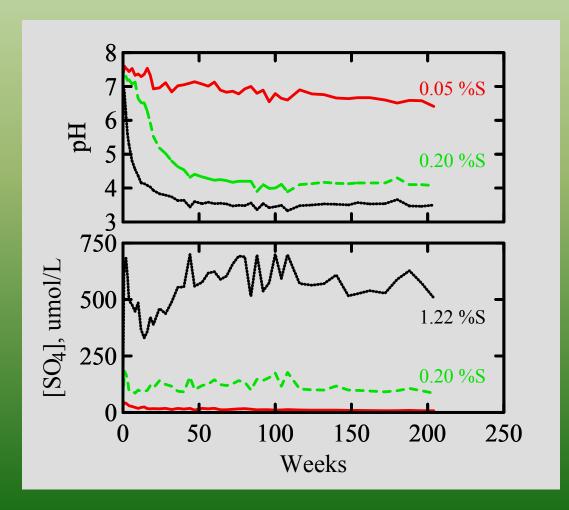
(4.2) Troctolitic rock reactivity, min pH vs %S

324 – 726 week record		7				
% S	min pH	6 Hd 5	*			
< 0.22	~ 6.0	Hd mnminiM 4		•		
0.40 – 0.58	3.8-4.1	≥ 3		•	•*	•
0.71 - 1.64	3.1 - 3.6	2				
		0.0 0.5 1.0 1.5 % Sulfur				

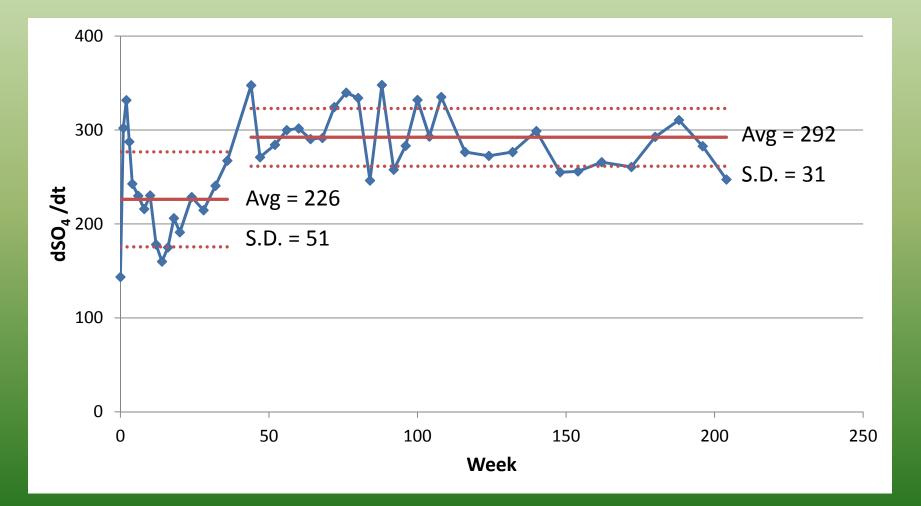
2.0

(4.2) Data Analysis: Solute release rates

Observed rates to determine field behavior


• Scale lab to field (NO SMALL TASK)

• Modeling to determine source terms


(4.2) Data Analysis: Solute release rates

- Humidity cell test yields
 - Solute concentrations
 - Drainage volume
- Can calculate solute release rates
 - Statistical description of all weekly rates or
 - For periods of relatively constant release
 - Average release rate and
 - Standard deviation

(4.2) Determine SO₄ release rates Archean Greenstone, 1.22% S

(4.2) Average sulfate rates: µmol(kg•wk)⁻¹

Summary

- ASTM D5744-13 detailed protocol [and 27 explanatory notes]
- Rigorous review process
- Approved in 1996, revised 2007, 2013
- Robust replication testing

ASTM D5744-13 Humidity Cell

- Provide detailed description of protocol
 - Provide guidance for new practitioners
 - Promote method consistency
 - Increase reproducibility of results
- Contributes to environmentally sound management of mine wastes today
- Generates data to improve understanding of mine waste dissolution tomorrow.

Method Description

ASTM International. 2013a. D5744-13, Standard test method for laboratory weathering of solid materials using a humidity cell. *In* Annual book of ASTM Standards, 11.04. American Society for Testing and Materials International, West Conschohocken, PA. 23 p. (http://www.astm.org/Standards/D5744.htm?A).

Bucknam. C.H., White III, W., Lapakko, K.A. 2009. Standardization of Mine Waste Characterization Methods by ADTI-MMS. *In* Proc. Securing the Future and 8thICARD, June 22-26, 2009, Skellefteå, Sweden (CD ROM). 12 p.

Lapakko, K.A. 2003. Developments in humidity cell tests and their applications. *In* Environmental Aspects of Mine Wastes, J.L. Jambor, D.W. Blowes, and A.I.M. Ritchie, Eds., *Mineralogical Association of Canada Short Course Volume 31*, 2003, p. 147-164.

To order method: service@astm.org

Robustness Testing

Lapakko, K.A., White, W.W. III. 2000. Modification of the ASTM 5744-96 kinetic test. <u>In</u> Proceedings from the Fifth International Conference on Acid Rock Drainage. SME, Littleton, CO. p. 631-639.

Lapakko, K.A., White III, W.W. 2013. Research Report D34-1019: Interlaboratory study to establish precision statements for ASTM D5744-13, Test method for laboratory weathering of solid materials using a humidity cell. Committee D34 on Waste Management, Subcommittee D34.01.04 on Waste Leaching Techniques, 1 September 2013. ASTM International, 100 Barr Harbor Drive, West Conshohocken, PA 19428. 111 p. (D34-1019 available upon request through ASTM Customer Service at <u>service@astm.org</u>.)

 White III, W.W., Lapakko, K.A. 2000. Preliminary indications of repeatability and reproducibility of the ASTM 5744-96 kinetic test for drainage pH and sulfate release rate. <u>In Proceedings from the Fifth International Conference on Acid Rock Drainage</u>. SME, Littleton, CO. p. 621-630.

Surface area available for reaction

Lapakko, K.A., Antonson, D.A. 2006. Pyrite oxidation rates from humidity cell testing of greenstone rock. <u>In Proc. 2006</u>, 7th ICARD, March 26-30, 2006, St. Louis MO. Published by ASMR, 3134 Montavesta Rd., Lexington, KY 40502. p. 1007-1025.

 Lapakko, K. A., Engstrom, J.N., Antonson, D. A. 2006. Effects of particle size on drainage quality from three lithologies. <u>In</u> Proc. 2006, 7th ICARD, March 26-30, 2006, St. Louis MO. Published by ASMR, 3134 Montavesta Rd., Lexington, KY 40502. p. 1026-1050.

http://www.imwa.info/docs/imwa 2006/1026-Lapakko-MN-2%20.pdf

Test Duration

Lapakko, K. A., Berndt, M. 2009. Laboratory dissolution of tailings under three different test conditions. In Proc. Securing the Future and 8th ICARD, June 22-26, 2009, Skellefteå, Sweden (CD ROM). 11 p.

Lapakko, K. A., Wessels, J. N. 1995. Release of acid from hydrothermal quartzcarbonate hosted gold-mine tailings. <u>In</u> Sudbury '95, Conference on Mining and the Environment, Sudbury, Ontario, May 28th - June 1st, 1995. p. 139-148.

Good Prediction References

Maest A.S., Kuipers, J.R., Travers, C.I., Atkins, D.A. 2005. Predicting water quality at hardrock mines: methods and models, uncertainties and state-of-the-art. Kuipers & Associates and Buka Environmental.

http://www.ceaa-

acee.gc.ca/050/documents_staticpost/cearref_3394/hearings/SM09.pdf

Morin, K., Hutt, N. Mines, Mining, and the Environment, Case studies. <u>http://www.mdag.com</u>

Price W.A. 2009. Prediction manual of drainage chemistry from sulphidic geologic materials. MEND Report 1.20.1.

http://wman-info.org/resources/technicalreports/MENDPredictionManual-Jan05.pdf/file_view