Performance of an Engineered **Cover System After Six Years** at the Areva Resources Cluff Lake Mine Waste Rock Pile in Northern Saskatchewan

M. O'Kane – O'Kane Consultants (Calgary)

B. Ayres – O'Kane Consultants (Saskatoon)

L. Barber – O'Kane Consultants (Saskatoon)

AREVA

D. Hiller – AREVA Resources Canada (Saskatoon)

D. Helps – AREVA Resources Canada (Saskatoon)

Integrated Geotechnical Engineering Services Specialists in Unsaturated Zone Hydrology

Discussion Points

INAP

- Background
- Cover System Design
- Cover System Construction
- Monitoring Program Results
- Concluding Remarks
- New Cover System Guidance Document

Background

- *Cluff Lake uranium mine, AREVA Resources Canada*
- Athabasca basin, 75 km S of Lake Athabasca, 15 km E of AB border

Operation 1980-2002, decommissioned 2004-2006

Semi-arid climate

- Mean annual precip. of 450 mm (30% as snow)
- Potential evaporation of 600 mm

Mine History

- Operated 1980 2002
- Produced 6.25M lbs. of yellowcake (U₃O₈)

- Production planned to cease December 2000 due to depletion of economically viable reserves, and max tailings volume reached.
- Higher grade of production allowed operation to December 2002.

http://www.ceaa-acee.gc.ca/41B79974-docs/report e.pdf

Decommissioning

- Commenced in in 2004 and now completed
- Claude pit backfilled, mill and other outbuildings dismantled
- Tailings area covered
- Waste rock piles re-sloped and covered

Decommissioning cont'd

- Site specific water quality objectives developed for iron, uranium, molybdenum and cobalt, as SK did not have guidelines for these CoCs.
- No adverse impact on surface water.

Decommissioning cont'd

• A mixture of six native woody species were planted, selected from local seed availability.

• 800,000 trees and shrubs planted since 2004

http://www.ceaa-acee.gc.ca/41B79974-docs/report_e.pdf

Claude Waste Rock Pile

- Claude waste rock pile constructed 1982-1989 using end dumping
 - Claude pile 7.23 million tonnes of waste from the Claude pit
- High levels of uranium (200 mg/L and nickel (43 mg/L) in piezometers at pile toe

Cover System Design Approach

NTERBETTER COARGE AND FINE STRUCTURE ONTROLLING POWNWARD SEEPAGE AND GAS TRANSFER

Soil-Plant-Atmosphere

WATER.

RAINAG

Cover System Design Modelling

- Arise after Setting Closure
 Objectives through Consultation
- Link Impacts to the Receiving Environment to Determine Required Performance
 Develop a Rationale Basis for
 - Cover System Design Criteria

Cover System Design Approach **Cover System Field Trials**

Soil-Plant-**Atmosphere Cover Design** Modelling

Full-Scale Cover Design

Cover System Design

Cover System Field Trials

- Constructed and instrumented in 2001, plateau and slope areas
- 20 cm compacted waste rock overlain by 100 cm sandy till

Cover System Field Trials

Cover System Construction

- Slopes re-contoured to 4H:1V
- Waste rock top 20 cm compacted to minimum 95% dry density
- Waste rock k_{sat} = 10⁻⁵ to 10⁻⁶ cm/s

Cover System Construction

Surface drainage channels for 24 hour, 100-year design storm event

 Applied seed and fertilizer mixture using a drill seeder

Cover System Instrumentation

- Meteorological monitoring:
 - Precipitation
 - Net radiation
 - Wind speed and direction
 - Air temperature and RH
 - Runoff

Cover System Instrumentation

- *In situ cover* monitoring:
 - Temperature
 - Matric suction
 - Volumetric water content

Cover System Instrumentation

LT22 This is okay. Look for a higher resolution version, and put your own arrows and symbols showing what is what. Lindsay Tallon, 8/29/2013

Meteorological Data

Thermal Cycling in Cover

Moisture Cycling in Cover

Moisture Availability (2008)

Moisture Availability (2009)

Moisture Availability (2010)

Moisture Availability (2011)

Cover System Evolution

Waste Rock Pile Water Balance

	PPT (mm)	Water Balance Fluxes (mm and % of precipitation)				
Plateau		AET	ΔS	R	NP	
2007	450	231 (51%)	34 (8%)	6 (1%)	179 (40%)	
2008	272	297 (109%)	-96 (-35%)	6 (2%)	66 (24%)	
2009	387	290 (75%)	31 (8%)	5 (1%)	61 (16%)	
2010	358	303 (85%)	12 (3%)	2 (1%)	40 (11%)	
2011	271	182 (67%)	9 (3%)	2 (1%)	58 (21%)	
2012	430	317 (74%)	33 (8%)	5 (1%)	105 (24%)	

	PPT (mm)	Water Balance Fluxes (mm and % of precipitation)					
Slope	111 (mm)	AET	ΔS	R	LD	NP	
2007	419	239 (57%)	17 (4%)	58 (14%)	0 (0%)	104 (25%)	
2008	261	308 (118%)	-85 (-33%)	50 (19%)	-57 (-22%)	45 (17%)	
2009	396	314 (79%)	15 (4%)	41 (10%)	0 (0%)	26 (7%)	
2010	371	320 (86%)	4 (1%)	22 (6%)	-21 (-6%)	46 (12%)	
2011	295	231 (78%)	3 (1%)	19 (6%)	25 (9%)	44 (15%)	
2012	422*	310 (73%)*	51 (12%)*	24 (6%)*	0 (0%)	92 (22%)*	

Waste Rock Pile Water Balance

Landform as a Whole

Year	PPT(mm)	NP
2007	433	138 (32%)
2008	266	55 (20%)
2009	392	42 (11%)
2010	365	43 (12%)
2011	284	50 (18%)
2012	426	98 (23%)

Cover System: Building Blocks

Time

Waste Rock Pile Water Balance

Summary

- Net percolation has generally decreased
 - Increase vegetation cover
 - Increase evapotranspiration

- Timing of precipitation important:
 - Storm events in fall 2012 greater net percolation due to decreased evapotranspiration capacity
 - Cover did not freeze in 2012
 - Net percolation continued during winter

LT32 I don't like reading when I'm watching a presentation. Is there some sort of picture you can put up. Lindsay Tallon, 8/29/2013

Key Points

- Claude cover system is a stable landform and design objectives are being met
- Importance of long-term perspective when evaluating cover system performance
 - Natural climatic variability
 - Trajectory of vegetation cover

Cover System Guidance Document

Cold Regions Cover System Design Technical Guidance Document

MEND Report 1.61.5c

Affaires autochtones et

Aboriginal Affairs and Développement du Nord Canada Northern Development Canada

- Build off of Cold Regions Cover System Design Guidance Document
- Expand to 'Other' Climate Regions
- Advance Approach / Methodology for Cover System Design

- International Network for Acid Prevention
 - Consortium of ten companies

 Cover System Guidance Document
 What attributes of the region can be exploited, enhanced, or combined to achieve performance criteria

Cover System Guidance Document

World map of Köppen-Geiger climate classification

Contact : Murray C. Peel (mpeel@unimelb.edu.au) for further information

DATA SOURCE : GHCN v2.0 station data Temperature (N = 4,844) and Precipitation (N = 12,396)

PERIOD OF RECORD : All available

MIN LENGTH : ≥30 for each month.

RESOLUTION : 0.1 degree lat/long

Significant Temperate Regions

Significant Temperate Regions

BWh

BWk

BSh

BSk

Climate Regions for Guidance Document

Context of Focus for Guidance

Oil Sands Example $\Delta S = P - ET + (R_{in} - R_{out}) + (GW_{in} - GW_{out})$ **Deficit /Seasonal Ice.**

Devito, K., Mendoza, C., Qualizza, C. (2012).

