Coal Mine Planning and Selenium in British Columbia

Justin Stockwell and Alan J. Martin Lorax Environmental

Guy Gilron Borealis Environmental

Senelium (sə'nē lē əm)

Noun: from Latin senilis, to drive one Crazy!

Outline

- BC coal
- Project effects on selenium water quality
- Mitigation
- Water treatment
- Considerations for mine planning

BC Coal

- Most coal mined in NE and SE BC is metallurgical coal
- BC is well known its high quality steel making met coal

- Primary driver for effects on selenium is from unsaturated spoils
- Loadings from exposed, open pit walls are typically much lower than spoils
- Saturated spoils and coal refuse (tailings and CCR) Se loadings are typically negligible

Snowmelt driven hydrograph – highly variable flow

• Spoil Se signature typically inverse to flow

- Bypass considerations
- Surface water management infrastructure typically designed to manage flow and TSS
- Should also consider leakage and long-term storage (closure)

Mitigation Options Diversions and storage

- Diversion of contact waters away from sensitive habitat or low flow drainages
- Strategic release during higher flow or to larger water bodies
- Discharges must be managed to avoid sensitive (lentic) habitat
 - Initial dilution zone regulations apply to fish bearing waters
- Flow reductions must be evaluated to determine serious harm (new DFO regulation supplants HADD)
 - Evaluating and determining serious harm is more complex
 - Decision-making uncertainty
 - Compensation should be considered in mitigation options

Mitigation Options Attenuation by design

- Flooded pits
- Saturated backfill
- Permeable reactive barriers
- Engineered wetlands
- Design considerations:
 - residence time and flow rate;
 - nitrate and selenium removal rates

Mitigation Options Attenuation by design

- Selenium bioremediation is microbially mediated.
- Selenium speciation and removal strongly dependent on redox conditions.
- Suboxia is required for effective removal.

Mitigation Options Attenuation by design

• Selenium attenuation is inhibited by nitrate

	1. Oxygen (O ₂) Consumption:	
	$\boldsymbol{O_2} + 4H^+ + 4e^- \rightarrow 2H_2O$	
	2. Nitrate (NO ₃ ⁻) Reduction (Denitrification)	
	$2NO_3^- + 12H^+ + 10e^- \rightarrow N_2 + 6H_2O$	
ntia	3. Selenate (SeO ₄ ²⁻) Reduction:	Yiel
otei	$SeO_4^{2-} + 3H^+ + 2e^- \rightarrow HSeO_3^- + H_2O$	rgy
asing Redox P	4. Manganese Oxide (MnO ₂) Reduction:	Ene
	$MnO_2(s) + 4H^+ + 2e^- \rightarrow Mn^{2+} + 2H_2O$	ee
	5. Fe Oxide (FeOOH) Reduction:	8 Fr
	$FeOOH(s) + 3H^+ + e^- \rightarrow Fe^{2+} + 2H_2O$	asin
ecre	6. Sulfate (SO ₄ ²⁻) Reduction:	crea
ă	$SO_4^{2-} + 9H^+ + 8e^- \rightarrow HS^- + 4H_2O$	Ē

- Flooded pits are facilities that commonly exist in mine environments following surface development.
- Large repositories of mine-influenced waters.
- Tendency for water column stratification and development of suboxic bottom waters.

Expected Se removal mechanisms:

- Dissimilatory reduction of Se oxyanions and precipitation as elemental Se [Se(0)].
- Reduction of selenate [Se(VI)] to selenite [Se(IV)] and adsorption of selenite to particles.

Mitigation Options Saturated backfilled pit

- Design considerations
- Flow rate, removal rates, and residence time

Mitigation Options Saturated backfilled pit

- Increasing removal rates = higher treatment flow rates
- Nitrate removal considerations

Removal rate vs. Flow rate

- Flooded pits can be used as passive remediation cells
- Increased capacity results in increased RT and treatment potential

- Flooded pits offer potential to treat large volumes of water at relatively low cost.
- Semi-passive attenuation and water management considerations:
 - Residence time, oxygen demand and nitrate/selenium removal rates.
 - Conveyance of contact flows to pit.
 - Withdrawal of treated water from pit.
 - Polishing prior to discharge to environment.

Flooded pits are well suited for bioremediation

- Typically ultra-oligotrophic
- Respond well to nutrient amendments
- Natural algal communities (Inoculation not required)
- Low cost and easy to implement
- Seasonality of primary production

Conceptual model for Se attenuation

Mine water management – semi-passive treatment

ENVIRONME

Mitigation Options Saturated backfilled pit

Saturated backfill may be designed and managed to treat contact water for Se and nitrate removal

Mitigation Options Attenuation in pits

Maximize saturated storage volumes

- Mine planning (pit morphometry and timing)
- In-pit berms
- Mine waste management saturated backfill
- Water management

Mitigation Water Treatment

- Biotreatment
 - Nitrate and nitrate are reduced to nitrogen gas
 - Selenate and selenite are reduced to particulate elemental selenium
 - Nitrate inhibits selenium bioreduction
 - Biotreatment plants must be designed for denitrification

Mitigation Water Treatment

- Biotreatment
 - Complicating factors include:
 - Storage and water management
 - Temperature influent may require heating
 - Highly variable influent (Se, nitrate, TSS)
 - Potential effects from biotreatment effluent
 - Temperature
 - Ammonia
 - Phosphorous
 - TSS
 - BOD and dissolved oxygen

Mitigation Water Treatment

- Biotreatment has been demonstrated at numerous industrial facilities
- Limited application in natural settings typical of BC coal mines
- Two facilities currently under construction in BC, scheduled to be commissioned in 2014

Summary

- Managing selenium is complex
 - Highly variable flow and concentrations
 - Flow reductions considerations
 - Nitrate inhibition
- Design for closure
- Understanding of passive attenuation continues to be refined
 - Further study necessary to inform mine planning and design
- Active treatment scheduled for commissioning in 2014

Thank you

78.96 2.5 **34** 685 221 [Ar]3d¹⁰4s²4p⁴ 4.79 -2,4,6

