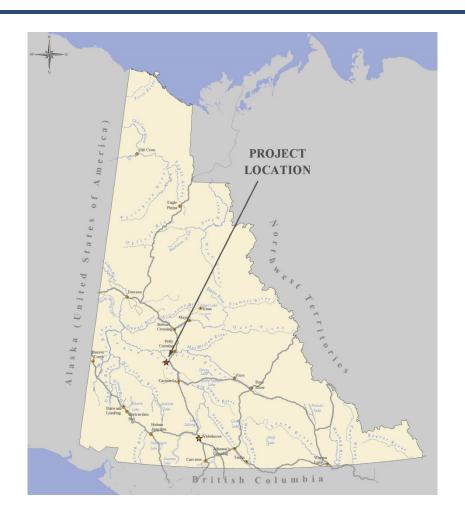


Minto Mine – Operational Experiences Managing Waste to Reduce Potential for Acid Rock Drainage

> Ryan Herbert Colleen Roche

Capstone – Our Global Operations



Capstone - Portfolio

PRODUCTION Three operating mines	DEVELOPMENT Growth project	EXPLORATION Portfolio
Production assets located in stal geographies in the Americas produ ~230 M lbs of copper annually	ucing offering significant growth in	Early-stage base metals exploration properties.
 Pinto Valley Arizona, US 130 - 150 M lbs copper¹ 	Santo Domingo Region III, Chile CS 70%; KORES 30%	ChileCanada
 Cozamin Zacatecas State, Mexico 44 M lbs copper² 		> Mexico
 Minto Yukon, Canada 41 M lbs copper² 		

- High-grade copper mine NW of Whitehorse (~40 km south of Pelly Crossing)
- Stream sediment sampling program drew Asarco Inc. to stake claims in 1970
- Sherwood Copper Corp. purchased Minto Explorations Ltd. in 2005
- Commercial production achieved in October 2007
- Began its mine life with one pit, six to seven year mine life
- Exploration success has extended the project life

- The mine is located on Selkirk First Nation "Category A" lands
- Co operation agreement was originally signed in 1997
 - Renewed in 2009
- As land owners, Selkirk engaged in most aspects of site management and development

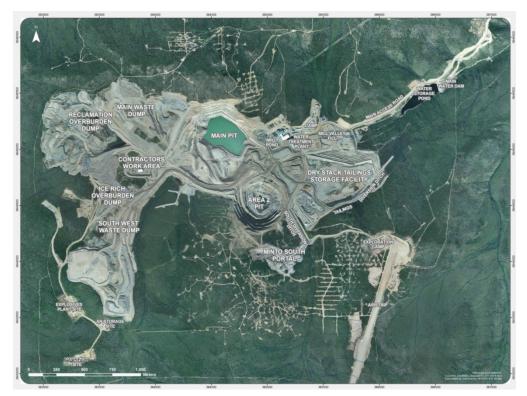
High grade copper mine operating in Yukon in partnership with Selkirk First Nation

Open pit and Underground mine in Yukon, Canada

Daily production rate (tpd)	~ 4000
Mine life remaining (years)	+9
Production - 2013 guidance (M lbs Cu)	41
By-products	Au, Ag

Shipment of Copper

 Concentrate is trucked to Skagway and from there delivered to customers by boat



Overview of our presentation

- > ABA program at Minto
 - Objectives
- Defining PAG at Minto Mine
 - Water licence criteria
- Initial Indicators of changed ABA results: Timeline
- Adapting Strategies
- Operational Challenges

Maintaining a long term focus on reducing potential for ML ARD, adapting accordingly

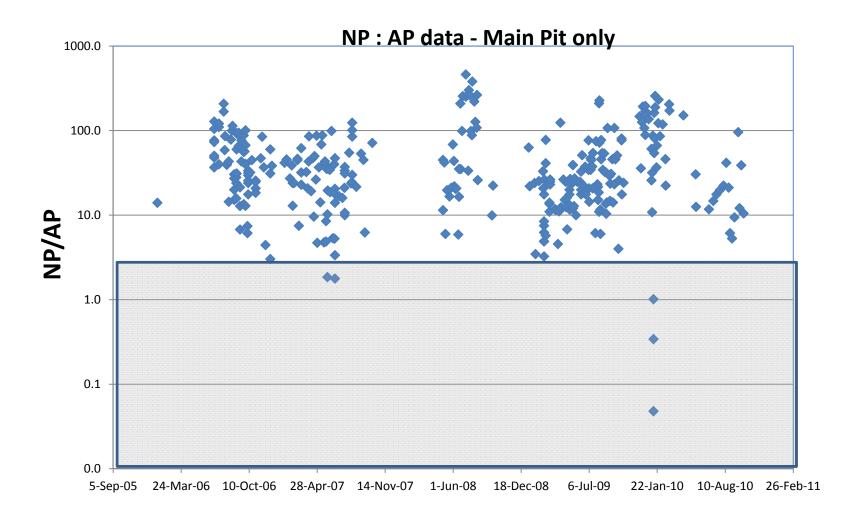
Minto Mine – ABA Program Overview for Waste Rock

- Objectives:
- determine the NP/AP ratio of waste rock and overburden
- Generally guide site knowledge of ABA characteristics of waste rock
- Feeds into ML ARD monitoring used for EA
- Field geologist : key player
- collects samples
- Records rock types or lithological units not previously identified
- changes in mineralogy such as identifying pyrite, other sulphate and carbonate minerals
- A composite sample of drill cuttings from each blast in waste

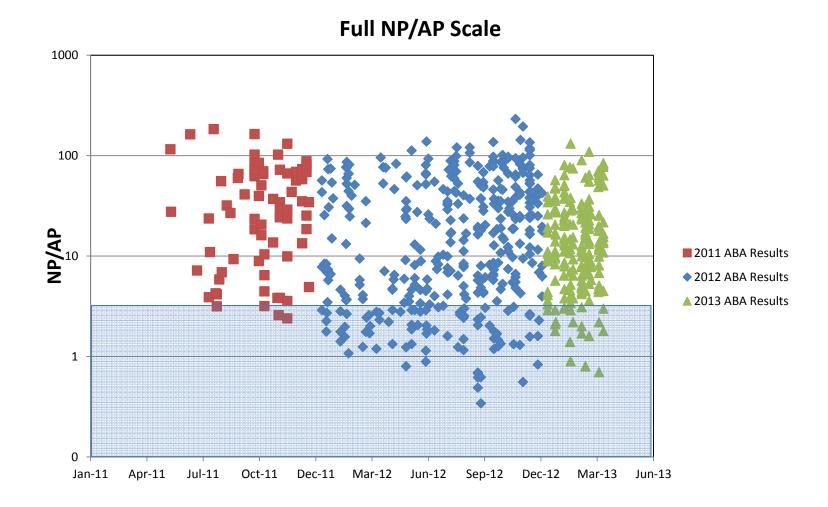
Minto Mine – ABA Program Overview for Waste Rock

- Test Work and Evaluation
- ABA analysis using the BC Research Method
 - As required in water licence
- Paste pH, inorganic carbonate content and Fizz test
- Every 10th sample:
 - Filtering the residual liquid phase used to determine NP and run ICP MS scan includes calcium, magnesium, aluminum and iron

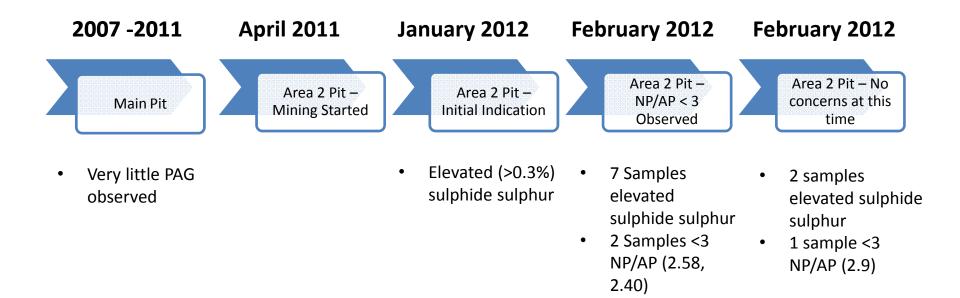
Minto Mine – Waste Segregation


- Initial Waste Segregation and Dispatch procedure
 - All waste rock from Area 2 Pit was dispatched and disposed of based on Cu% grade

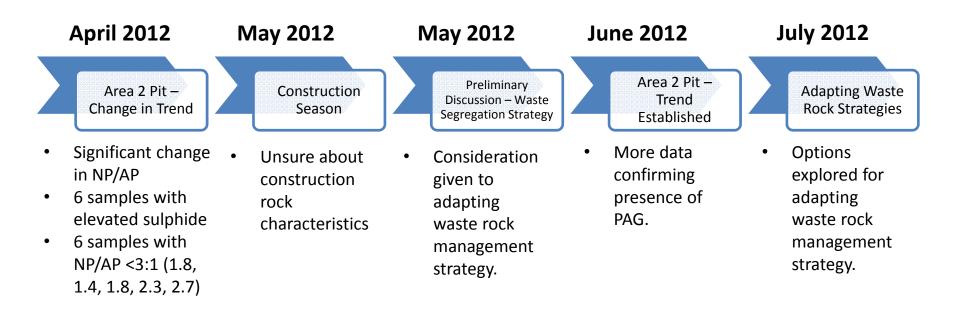
Waste Grade Bins	Copper Grade Range	Description of Disposal
Zero-grade Waste	< 0.01%	Can be utilized for construction projects and dumps located in sensitive areas.
Low-grade Waste	0.01% - 0.10%	Not of significant concern at closure, generally used for construction.
Mid-grade Waste	0.10% - 0.36%	Copper Leach is a concern at closure, material must be handled separately, but has poor prospects for future milling.
High-grade Waste	> 0.36% - Cutoff Grade	The same disposal requirements apply as do for mid-grade waste, but there is a chance that if mill throughput or metal prices increase substantially, this material will prove economic.



Defining PAG at Minto: Main Pit ABA data



Defining PAG at Minto: Area 2 ABA data



Initial Indicators - Timeline

Operational Challenges

Adapted Waste Segregation and Dispatching

- All waste rock to be dispatched based on NP/AP and sulphide sulphur content
- Waste Dispatch Solution Criteria
 - Does not disrupt production or involve significant rehandling
 - Feasible from a cost perspective
 - Quickly implemented
 - Reliable/Consistent
- Waste Disposal Solution Criteria
 - Addresses environmental risk
 - Feasible from a cost perspective
 - Does not disrupt production or involve significant rehandling

Solution for Classification of Waste Rock

- Carbon Sulphur Induction Furnace
 - Met all the criteria:
 - Turn-around on results the same or quicker than Cu assay
 - Cost was feasible at ~ \$40,000
 - Unit purchased and setup in 1 month
 - Procedures for sampling, testing, data management and field staking were developed while waiting for unit
 - Measurements are repeatable and a calculated NP and AP could be determined

Solution Waste Rock Disposal

- Disposal in the Main Pit below the closure saturation elevation.
 - Addresses environmental risk PAG material will be saturated upon closure
 - Will not have to rehandle material upon closure
 - Relatively short haul, access available

Implementation

On-site Assay lab

- <u>Every</u> blast hole sample split
- Using Eltra induction furnace determine C(T) and S(T)

Geology

- Integrate onsite data into blast hole database
- NP and AP for every blast hole
- Create new waste rock type (PAG) for rock with NP/AP <3</p>


Mine Operations

- Determining mineable blocks
 - Used ore mining strategy for segregating PAG in blasted muck piles
- Develop design for PAG dump in the Main Pit
 - Determine volume of PAG impacting storage capacity for closure planning
- Develop and Implement a Waste Rock Verification Program

Conclusion and Lessons Learned

- Minto orebodies are complex, requiring conservative practices related to management of ARD
 - Not a porphyry deposit
 - Irregular ore zones made more complex by structural features
- Use this information to inform future Environment Assessment studies and refine exploration core logging practices

For additional information, please visit capstonemining.com or contact us at:

Phone: +1-604-684-8894 Toll Free: 1-866-684-8894 Email: info@capstonemining.com