

From Mines to Roads:

A Phased, Risk-based Approach for ML/ARD Assessment for Linear Projects

Mallen N., K. Malowany, and B. Mattson with the assistance of G. Morris

Agenda

- Phased Approach
- Risk-based Approach
- Screening Tool
 - Objectives
 - Hypothetical Example
- Detailed Investigation
- Effects Assessment
- Lessons Learned
- Conclusion

Phased Approach

- Conceptual Design:
 - Alignment determined early
 - From 30 to 300+ km long
- Preliminary Design:
 - Cut & fill balanced
 - Preliminary risk ratings
- Detailed Design:
 - Quarries every few km, identified late
 - Focus detailed investigation on sections with higher risk
 - Lead into water quality predictions

Risk-Based Approach

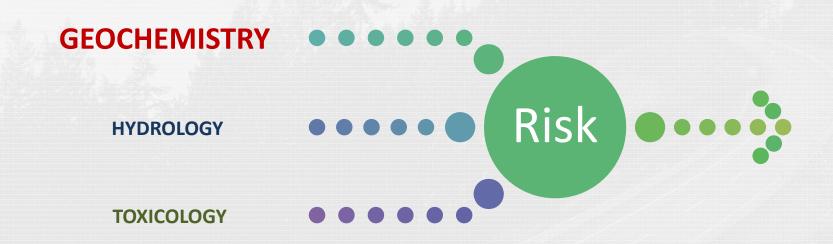
- ML/ARD can be a "deleterious substance" as per Fisheries Act
- E.g. Pennask Creek (2002)
- Consider
 - Stressor
 - Geochemistry
 - Pathway
 - Hydrology
 - Receptors
 - Toxicology

Risk-based Approach

Precedent: Sea-to-Sky Highway Upgrade (2004)

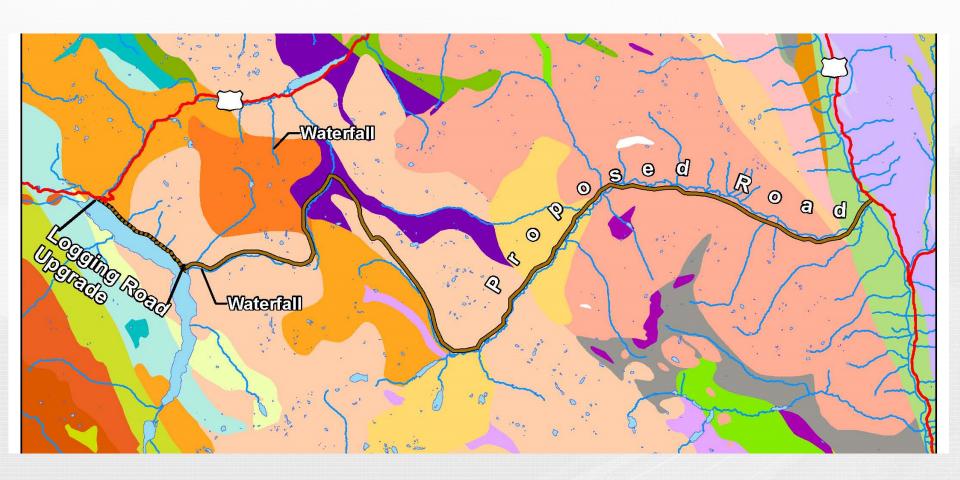
SEA TO SKY HIGHWAY
AND ACID ROCK DRAINAGE:
A MODELLING APPROACH TO
ASSESSMENT OF POTENTIAL
ENVIRONMENTAL EFFECTS

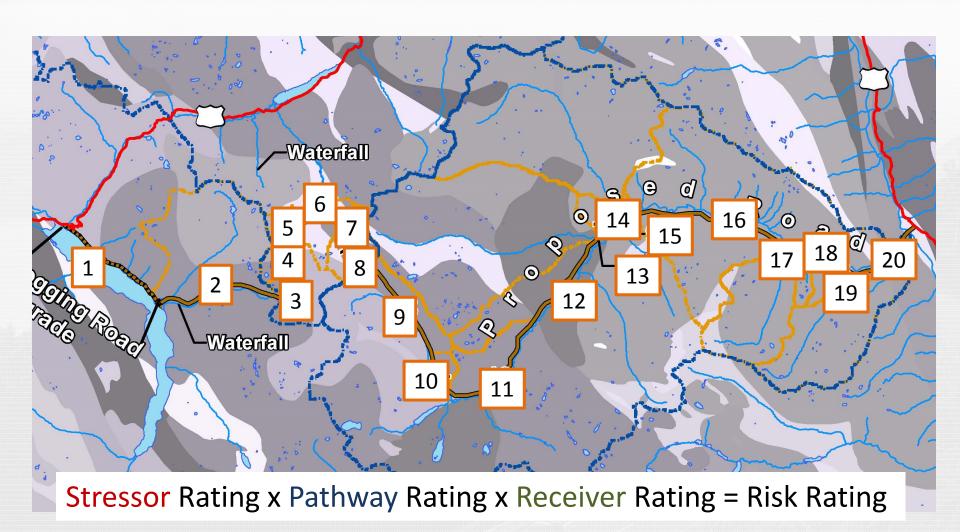
...Results of the ARD/ML testing were coupled with the results of a hydrologic analysis to predict metal loading to streams. The predicted stream concentrations were assessed in the context of sensitive aquatic organisms known to occur in the drainages...

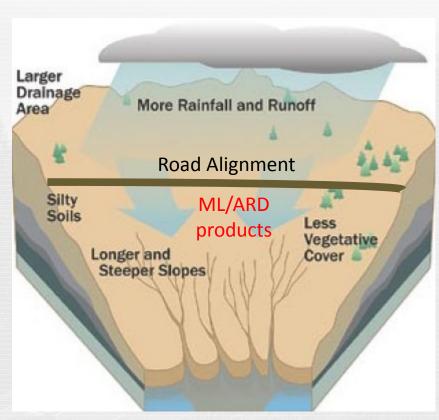

Mallen, N.D. & C.S. Ross, 2004



Screening Tool - Objectives

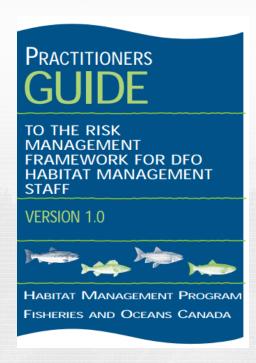

- Timely input to conceptual, preliminary design
- Facilitate avoidance, minimize risk
- Focus subsequent effort on higher risk areas




Stressor (ML/ARD)

- Objective:
 - Approximate ML/ARD potential of disturbed rock
- Based on:
 - Published mapping
 - Initial ABA results from chip samples
- Rating:
 - Initial rating based on general characteristics of geologic unit (i.e. alluvium - low risk, marine shale – high risk)
 - Subsequent sampling used to update assessment with site-specific criteria set based on S content, NPR and paste pH
 - 0 no risk1 low......2 moderate......3 high risk

Pathway (Hydrology)


- Objective:
 - Approximate contact flow and receiver low flow
- Based on:
 - Ratio rock cut volume : up-gradient catchment
- Rating:
 - Order-of-magnitude estimate (m³:ha)
 - 0 100 = 3
 - 101 1,000 = 2
 - 1,001 10,000 = 1

Receiver (Biota)

- Objective:
 - Estimate sensitivity of aquatic organisms to changes in water quality
- Based on:
 - Stream size, fish accessibility, species presence
- Rating:
 - Small stream, only periphyton,benthics low abundance /diversity = 1
 - Moderate stream, only "coarse" fishmoderate abundance / diversity = 2
 - River, Commercial, recreational fishery = 3

Road Section	Stressor (0-3)	Pathway (1-3)	Receptor (1-3)	Total (0-27)
ONE	0	3	3	0
TWO	3	1	1	3
THREE	2	2	1	4
NINE	3	3	3	27
TEN	2	2	3	12
•••				

Detailed Investigation

 Confirm / refine geochemical risk through additional static tests

Confirm / refine information on drainage network

and aquatic ecology

 Provide input on construction methodology to avoid, minimize impacts

Effects Assessment

- Determine "source terms", using SFE, kinetic test results (field bins, humidity cells)
- Estimate "contact" water relative to low flows in receiving environment
- Identify receptors and toxic effect thresholds - fish, benthic invertebrates, primary producers

Lessons Learned

- Challenging to provide guidance early enough
- Communication with design team is critical
- The screening tool is useful in 3 ways:
 - Identify high risk areas early
 - Helps to communicate risk
 - Facilitates transition to detailed assessment
- If avoidance fails
 - Mitigation options limited, costly

Conclusion

- Screening Tool has benefits
 - Facilitates early input
 - Avoid, minimize impacts
 - Saves time and money
 - Facilitates communication
 - Gradually builds knowledge base
 - Facilitates transition into, and focuses,
 detailed investigation and effects assessment

Questions?

