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Presentation Discussion Points
• Setting Context for Cover System

Monitoring
• What is a cover water balance?
• Examples 

• The Design Process w/ Timelines
• Challenges and Limitations with

“Conventional” Cover System Monitoring
• Soil water storage, precipitation, AET, Runoff

• Opportunities for “Non-Conventional”
Cover System Monitoring
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Courtesy of Justin Straker, Integral Ecology Group



Case Study: ECBC Sites

Toronto

Site: Near Sydney, NS 
Cape Breton Island

Atlantic Canada

Vancouver



Background…. ECBC
 ECBC is a Federal Crown 

Corporation responsible for 
environmental remediation 
associated with coal mining 
activities in Cape Breton
 Mining operations began in 

1685 to the 1980s
 50 underground mines 

produced 500 million tonnes of 
coal

 Responsibility for sites now under Public Works and Government 
Services Canada
 O’Kane Consultants installed cover system monitoring system over 

past 2-3 years
 Collaboration program with

Cape Breton University to
interpret and evaluate performance

Meiers et al (2014)



ECBC Site Location

 Lingan
 Scotchtown 

Summit (Summit)
 Victoria Junction 

(VJ)

Other Reclaimed 
WRPS
 Dominion No.4
 Gowrie
 Princess
 Franklin Sydney

VJ

LinganSummit

Meiers et al (2014)



Typical Site Climate Conditions
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 Mean annual PPT is 
~ 1,517 mm
 60% occurs in Winter 

(from October to March)  
 ~50% of winter TTP is 

snowfall  
 Mean annual PE ~700 mm
 Energy deficit in most 

months

Atmospheric Water Demand
In Summer

Climate:

PE PPT

Meiers et al (2014)



Site Cover System Profiles

Meiers et al (2014)



In Situ Direct Cover Monitoring
 Monitored water 

balance component:
 AET
 PPT
 Runoff
 Interflow
 Water Storage
 Net percolation (NP)

 NP Estimated through:
 Water balance
 Conservative tracer

 Internal WRP 
Monitoring System:
 Temperature
 Pressure
 GW elevations
 Pore-gas concentrations
 Pore-water quality

Meiers et al (2014)



Monitoring: VJ, Summit, Lingan
Cover System Water Balance:
 Runoff at Scotchtown Summit ~60%
 Interflow at Victoria Junction ~15%
 Interflow offsets proportional runoff volume
 Minimum 20% interflow volumes to minimize buildup of positive pore-water pressures

 AET Similar
 Net Percolation at 

Lingan ~30%
 Net percolation

offsets a
proportional volume
of runoff and/or
Interflow
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And then there is…..
• The Challenge of Actually

Obtaining these Measurements
• Meaning…

• Well developed tools for
• Rainfall, PE, AET,

Soil Water Storage
• But… Measuring

• SWE, Runoff, Net Percolation
• While Simple in Concept
• Can in Practice be

very Challenging



Surface Runoff Monitoring
• Dealing with sediment is 

challenging
• “Young” cover systems often 

require sediment removal before 
wet climate periods

• Cold regions require removal of ice 
(glaciation)

• Peak flow requires most attention
• Often require manual intervention
• Data QC can be intensive



Surface Runoff Monitoring
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Snow Water Equivalent



Snow Water Equivalent



Snow Water Equivalent



Net Percolation
 Direct measurement

 Lysimeters
 Indirect methods

 Hydraulic gradient
• Suction sensors

 Changes in moisture storage
• Water balance

 Numerical modeling
• Calibrate to changes in:

• Water table
• Near surface conditions (soil-plant-

atmosphere modeling)

 Pore-water conditions
• Isotope analysis
• Salts
• Tracers



Net Percolation

 Common design issues
 Too shallow and insufficient 

areal extent
 Field challenges

 Safety
 Replicating conditions
 Plateau locations



Net Percolation

 Delays timing of 
recording spring 
melt associated net 
percolation events

 Again….
 Heated enclosures
 Metal enclosures
 Insulated
 etc.



Summary of Design Process
Site and Material 
Characterization

Conceptual
Cover Design

Cover 
Construction

Detailed Design

Long-term Performance
Monitoring

Impact Analysis

Basic
Cover Design

Compliance
Assessment

Risk
Assessment

Cost / Benefit Analysis
(Collection & Treatment)

Field Trials &
Performance Monitoring

Modelling
Performance

Monitoring
Performance

Modelling
Performance



 Establish Design Objectives
 Characterize Available Materials
 Develop Design Alternatives

 Modelling – Analytic, Spreadsheet,
Numerical

 Field Prototype 
 Full Scale Construction
 Monitoring

• All elements of water balance
 Data Interpretation and Analyses

• Complete water balance
• Identify controlling mechanisms/process

 Final Cover Construction
 Long-term Monitoring

 Verification of Design 
Properties/Processes

 Tracking Evolution of Landscape with Time

 1 year
 10-20 years

(Cover Performance)
 20-100+ years

(Closure Assurance)

Summary of Design Process
Process Time Frame

 Months
 Months
 Months to year

 3-5 years

(Barbour 2014)



Limitations of Current Approach
 Small Time Scales

 5-10 years of monitoring 
• Evolution of soil properties 
• Calibrate/parameterize models

 Project driven climate 
window 

• May not experience climate 
variability

 Closure monitoring
• 100+ years?

 Small Spatial Scales 
 Monitored soil volume ~ 1 m3

• 1/100 of 1% of the cover in 1 ha 

 Small Numbers
 Small # of significant figures –

e.g. estimate NP
• Major input 

• Precipitation 
– ~ 500 of mm/year

• Major output
• Evapotranspiration 

– ~ 400-450 mm/year 
• Minor outputs 

• Net percolation & runoff 
– ~ 0-50 mm/year 

 Large Cost
 1 instrumented watershed

• ~100k capital – 10 year life
• ~ 20k/year maintenance

(Barbour 2014)



Non-Conventional Monitoring

Non-Conventional Cover
and Landform Monitoring
Air-permeability Testing (air-K)   
Distributed Temperature Sensing (DTS)
Geological Weighing Lysimeters (GWL)
Stable Isotopes of Water

(Barbour 2014)



Geo-Lysimeters

Non-Conventional Monitoring

(Barbour 2014)



 Wells in confined 
aquifers

 Piezometers in 
aquifers/aquitards

Hydrogeology Example – Barometric Loading

 Air Pressure

 Water Pressure ≤  Air Pressure
(Barometric Loading Efficiency)

Drop in Well Level
(Barometric Efficiency)

Confined Aquifer

Geo-Lysimeters

(Barbour 2014)



Geo-Lysimeters:  
Self Calibrating Soil Water Weighing 
Scales

 Assumption
 Any surface loading transmitted  to depth 

results in change of pore water pressure

 Potential Application
 Pore pressures used to track 

key hydrological processes such as:
• Snow melt runoff
• Rainfall
• Evapotranspiration

tens of meters

Conceptual Sketch of Piezometric Weighing 
Lysimeter Installation

[after Van der Kamp et al, 2003]

Pressure transducer

(Barbour 2014)



Geo-Lysimeter :
Area of Influence
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Geo-Lysimeter Example:
Syncrude Sand Tailings Dyke

 Existing geotechnical monitoring piezometers
 Additional geo-lysimeters

• Adjacent soil cover monitoring & Eddy covariance 

(Barbour 2014)



Geo-Lysimeter Location 
Syncrude South West Sand Storage 
(SWSS)

~ 7 km Transect

(Barbour 2014)

B45



Geo-Lysimeter Response

 Southwest Sand Tailings – Syncrude 
Cross Section and Flow Model

[after Adrianne Price, M.Sc./ Mendoza, UofA Earth Science
and Keely Kulpa, Research Assistant]



Geo-Lysimeter Response to Rainfall:

[James Tipman, MSc / Garth van der Kamp, Env Canada]
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Biological Monitoring Example

Hebda explained these are not webs for catching 
food but rather webs for "ballooning" by small 
spiders.

"They basically produce a long single strand and 
let the wind catch it and carry them."

He said if there conditions make the place no 
longer suitable — such as flooding or drastic 
change in temperature — spiders will disperse.

"It's got to be something fairly large scale that 
covers a relatively large area. They will all move 
at the same time and travel the same distance."



O'Kane Consultants Inc.
Habitat for Humanity Initiative – El Salvador

Thank You!




