

Mine Waste Management The Balancing Act between Geochemistry & Geotechnical Design

Adding Value. Delivering Results.

Issue

Often Conflicting Management Strategies

What may be good for long-term physical stability may be contrary to long-term geochemical stability.

Modified after:

Wilson, G. Ward and Robertson, A. MacG. The Value of Failure. Geotechnical News. June 2015

General Criteria for Managing Waste & Water

All Life Stages (Operations, Closure, Post-Closure)

Manage tailings and waste rock in a safe manner

Manage tailings and waste rock to prevent onset of ML/ARD

-Divert clean water / Minimize collection of contact water

Water...A Common Theme

- Geotechnical Stability:
 - Eliminate surface water from the impoundment
 - Promote unsaturated conditions in the tailings with drainage provisions
 - Increase tailings deposit strength by compaction
- Geochemical Stability:
 - Water covers good
 - Saturated conditions

Water...A Common Theme

- Mining Process requires water:
 - Fresh water
 - Reclaim/Recycle water
 - Potable water
- Receiving Environment:
 - Sufficient flow for aquatics
 - WQ affects

Management Strategies

Type of Impoundment

Cross Valley

Perimeter

Type of Deposition

Slurry

Thickened

Alternative Deposition Options

In-Pit Tailings

Paste Backfill

Filtered Options

Site-Specific Considerations

Knight Piésold

Physical Stability

Physical Stability

Knight Piésold

Best Available Technologies....

Considerations

- Site conditions climate, mine site layout, topography, public health and safety risks, and potential social and environmental impacts
- **Tailings characteristics** physical properties and geochemistry
- **Footprint** (area of disturbance)
- Storage volume and potential for expansion
- Transportation and placement pipeline, conveyor, truck; proximity and elevation of the proposed site in relation to the processing plant
- Water management dewatering effort, seepage control, potential surface drainage and groundwater impacts
- Dust control

Knight Piésold

- Closure, decommissioning and reclamation long-term tailings containment, stability, seepage and water quality, public health and safety risks, and potential social and environmental impacts.
- Life cycle costs

Best Available Technologies

Geotechnical Considerations

The Independent Expert Engineering Investigation and Review Panel Report (Panel Report) for the Mt. Polley tailings dam failure provided suggestions for improvement of tailings physical stability through measures which:

- Eliminate surface water from the impoundment
- Promote unsaturated conditions in the tailings with drainage provisions
- Increase tailings deposit strength by compaction

These measures are referred to as principles of 'Best Available Technology' The focus of these principles is on physical stability of the tailings mass.

Tailings Technology

Mine tailings are described by their approximate solids content at delivery – a range referred to as the tailings continuum qualitatively describes:

- Solids content
- Thickening effort
- Method of delivery to facility
- Segregation during placement

Advantages and disadvantages:

- Project-by-project basis
- For full project life (construction, operations, closure, post-closure)

Geochemical Considerations

Mine waste rock and tailings are classified as potentially acid generating (PAG) or nonacid generating (NAG) - NAG waste rock can be further classified based on metal leaching potential.

- Alternative methods for waste rock storage can provide chemical stability (resisting or delaying the onset of metal leaching or ARD).
 - Submergence will prevent oxidation and acid generation (by removal of air)
 - Submergence will prevent/reduce metal leaching
 - Submergence simplifies preventing "air entry"

Which BAT?

Which BAT?

Pre-screening (Fatal Flaw)

Multiple Accounts Analysis and/or Risk Based Analysis

Residual Risk Management (Failure Modes Effects Assessment or similar)

Multiple Accounts Analysis

Ranking System

A numerical ranking system based on a series of accounts and indicators.

- Typically follows framework from Environment Canada: Guidelines for the Assessment of Alternatives for Mine Waste Disposal
- No master criteria list
- Complexity is project specific
- Schedule 2 Amendment may necessitate this framework

Multiple Accounts Analysis

Results

Comparison of relative merits based on multiple defined criteria to find best option:

Risk Based Analysis

Ranking System

A numerical risk ranking developed by multiplying likelihood and consequence:

	DESCRIPTOR	LIKELIHOOD SCORE
	Very rare	1
\sim	Unlikely	2
	Possible	3
	Likely	4
	Almost Certain	5

CONSEQUENCE SCORE	DESCRIPTOR
1	Insignificant
2	Minor
3	Moderate
4	Major
5	Catastrophic

Hazards could include:

 Technical aspects, environmental impacts, aboriginal rights and title impacts, economic losses, etc.

Risk Based Analysis

Results

Comparison of relative risk based on several defined hazards to find most practical and appropriate solution from a risk perspective:

Final Thought....

There is a Balance Between Physical & Geochemical Stability

Modified after:

Kempton, H., Bloomfield, T.A., Hanson, J.L., and Limerick, P. 2010. Policy Guidance for identifying and effectively managing perpetual environmental impacts from new hardrock mines. Environmental Science & Policy, Volume 13, Issue 6, October 2010, Pages 558-566. Final Journal version available at: http://dx.doi.org/10.1016/j.envsci.2010.06.001.

THANK YOU

Ken Brouwer, Steve Lange, Steve Aiken, Greg Smyth 604-685-0543 gsmyth@knightpiesold.com