

Achieving less than 1 ppb Se – Results of pilot demonstration for the KSM project

BC MEND ML/ARD Workshop | December 3, 2015

Brent Baker Manager - Process Engineering BioteQ David Kratochvil President & CEO BioteQ Brent Murphy Vice President, Environmental Affairs Seabridge Gold

KSM project requirements

- Compliance with BC WQG < 2 ppb Se sets the requirements
- Total flow of mine impacted water up to 200,000 m³/day
- Selenium management plan key principles
 - Intersect stream with the highest selenium load
 - Treat this stream in a plant to < 1 ppb

Selection of Selenium Removal Process

KSM Project Challenge	Impact on Process Selection
< 1 ppb Se discharge target	Cannot use biological process
ARD nature of wasterock seepage – cocktail of constituents	Membrane pre-treatment requirements costly, water recovery reduced
Variable loads (flow and mass)	Process should be adaptable to variations caused by seasons/mine plan
Quantity and long term stability of residues	Brine management from membranes cost prohibitive, permitting of biosolids disposal complicated
Cold water temperature	Process performance and cost not sensitive to temperature

Feed Water Quality

Rock Storage Facility (RSF) Estimated Values

	Minimum	Median	Mean	95th P	Maximum
Anions and Nutrients					
Chloride	0.756	4.63	5.52	13.1	25.2
Nitrite	0.001	0.842	1.11	2.99	4.64
Nitrate	0.032	36.7	48.3	130	202
Ammonia	0.006	4.63	6.11	16.5	25.5
Sulphate	288	1227	1259	2284	2765
Phosphorous	0.028	0.188	0.349	1.21	1.94
Dissolved Metals					
Aluminum	2.78	20.4	20.7	39.0	50.3
Cadmium	0.0100	0.0440	0.0452	0.0828	0.0933
Calcium	87.1	138	136	164	168
Chromium	0.0017	0.0135	0.0137	0.0261	0.0371
Cobalt	0.137	0.190	0.190	0.221	0.224
Copper	18.3	25.5	25.4	29.6	30.1
Iron	17.5	152	162	326	535
Lead	0.139	0.195	0.195	0.227	0.234
Magnesium	6.74	20.8	20.3	34.5	41.4
Manganese	7.98	11.3	11.2	13.1	13.3
Molybdenum	0.0148	0.0995	0.109	0.243	0.357
Nickel	0.0310	0.0441	0.0439	0.0514	0.0522
Potassium	2.68	18.2	18.1	33.1	42.0
Selenium	0.0115	0.0836	0.0829	0.0978	0.0988
Silicon	6.93	37.5	37.8	70.8	91.2
Sodium	2.75	10.2	10.2	17.6	20.7
Strontium	0.527	1.91	2.05	3.69	6.55
Vanadium	0.0025	0.0213	0.0222	0.0425	0.0646
Zinc	1.00	5.05	4.98	6.20	6.40

	Batch 1	Batch 2
Anions and Nutrients		
Chloride	8.0	8.0
Nitrite	1.7	1.7
Nitrate	72	72
Ammonia	9.1	9.1
Sulphate	1800	1800
Phosphorous	0.9	0.9
Dissolved Metals		
Aluminum	30	30
Cadmium	0.06	0.06
Calcium	147	147
Chromium	0.02	0.02
Cobalt	0.19	0.19
Copper	26	26
Iron	236	236
Lead	0.20	0.20
Magnesium	27	27
Manganese	11	11
Molybdenum	0.16	0.16
Nickel	0.05	0.05
Potassium	26	26
Selenium	0.120	0.320
Silicon	54	54
Sodium	14	14
Strontium	2.8	2.8
Vanadium	0.03	0.03
Zinc	5.3	5.3

Selenium Removal Plant Feed Solution Targets

Selen-IX™ KSM Initial Flowsheet

Selen-IX[™] Mobile Pilot Unit

- Objective: Continuous operation & demonstration at customer's sites
- Hydraulic Capacity: 2 4 L/min

Pilot Campaign Objectives

- Demonstrate capacity to remove to < 1 ppb in a continuous process
- Demonstrate capacity to adapt to sudden changes in Se loading
- Characterize solids residue

Selen-IX[™] KSM Pilot

Project Phase	Volume of water treated
Process Commissioning/Calibration	65 m ³
Demonstration Closed Loop	32 m ³

Average Chemistry of Selen-IX™ Plant Feed

	Plant Feed Campaign Average		
	120 ppb feed	320 ppb feed	
рН	4.3	4.3	
Selenium (Se) – Se6	0.097	0.277	
Ammonia (as N)	6.3	5.4	
Nitrate (as N)	30	28	
Sulphate (SO ₄)	1950	1900	
Aluminum (Al)	9.4	12	
Calcium (Ca)	661	615	
Copper (Cu)	15	17	
Manganese (Mn)	9.1	9.7	
Nickel (Ni)	0.14	0.06	
Silicon (Si)	18	18	
Strontium (Sr)	4.2	3.9	
Uranium (U)	0.0013	0.0012	
Zinc (Zn)	4.7	4.6	

Initial Pilot Operations – IX Data

Inter-dependency of IX and Eluate Treatment

Effect of Selenium in Recycled Regenerant on Selenium in IX Discharge

Selenium in Recycled Regenerant (mg/L)

Reaching < 1 ppb effluent selenium requires high degree of selenium removal from regenerant

Summary of Initial Challenges During Piloting

- < 1 ppb target not achieved when we started to recycle brine in closed loop operation
- Data analysis revealed to reach < 1 ppb in plant effluent, selenium removal from recycled brine had to exceed initial pilot design (initial design of 200 ppb, to less than 10 ppb)
 - Requirement for additional electrocells (from 6 to 12)
 - Change from constant EC flow to batch treatment
 - Resulted in significant piping rework
- Molybdenum released from iron anodes reduced selenium removal by ion exchange
 - Secondary molybdenum precipitation system was implemented

Selen-IX™ KSM Revised Pilot Flowsheet

Summary of Selen-IX[™] Demonstration

Plant Feed & Discharge During Demonstration

	12	0 ppb	320) ppb
	IX Feed (mg/L)	IX Effluent (mg/L)	IX Feed (mg/L)	IX Effluent (mg/L)
Ammonia (as N)	6.34	6.6	5.44	5.52
Nitrate (as N)	29.6	23.6	27.9	29.4
Sulphate (SO ₄)	1,950	1,890	1,900	1,810
Aluminum (Al)	9.4	10.2	12.0	12.1
Calcium (Ca)	661	655	615	628
Copper (Cu)	14.5	15.5	16.9	17.5
Nickel (Ni)	0.135	0.138	0.064	0.068
Selenium (Se) – Se6	0.097	< 0.0005	0.277	0.0005
Silicon (Si)	18.1	18.4	18.2	18.7
Uranium (U)	0.0013	0.0002	0.0012	0.0002
Zinc (Zn)	4.74	4.79	4.56	4.73

Solids Dewatering & Characterisation

Solids Residue Assay

Element	Units	Solids Residue (120 ppb Se feed)
Fe	% dwb	43.8
S	% dwb	4.3
Na	% dwb	2.0
Se	% dwb	< 0.1

With O & H making up the remaining

Semi-Quantitative Phase Analysis -XRD

 Estimates based on analysis of XRD difractogram analysis by International Centre for Diffraction Database

Mineral	Ideal Formula	Estimated %
Goethite	α -Fe ³⁺ O(OH)	57.0
Lepidocrocite	γ-Fe ³⁺ O(OH)	35.5
Magnetite / Maghemite	$Fe_3O_4/\gamma Fe_2O_3$	4.1
Bloedite	Na ₂ Mg(SO ₄) ₂ ·4H ₂ O	1.9
Gypsum	CaSO ₄ ·2H ₂ O	1.5
Total		100.0

TCLP Results of Solids Residue

Element	TCLP Reg. Limit (mg/L)	Result (mg/L)
Cd	10	< 0.050
Cr	50	< 0.25
Cu	250	0.071
Ni	250	5.18
Pb	50	< 0.25
Zn	250	< 0.50
Hg	1	< 0.0010
Sb	150	< 1.0
As	50	< 1.0
Ве	10	< 0.025
ТІ	50	< 1.0
V	250	< 0.15
Se	1	< 1.0
Ва	1,000	< 2.5

Air Blow – Iron Selenium Cake

KSM Pilot Campaign Summary

- Selen-IX[™] can remove Se < 1 ppb selectively from waste rock seepage
- Selen-IX[™] is robust and readily adaptable to Se load fluctuations
- Solid residue is mostly iron oxide
 - Solids are non-hazardous/pass TCLP
 - Off-take of iron residue is possible
 - Additive to cement or steel production

Subsequent Selen-IX[™] Pilot Treating Mine Impacted Water From Northern BC Project

Closed Loop IX Data

Se Interdependency

Effect of Selenium in Recycled Regenerant on Selenium in IX Discharge

Main Takeaways from Latest Pilot

- Entered straight into closed loop operations with the same system as Seabridge
- Consistently attained 1 ppb at end of pipe
- Operated 24/7 for ~2 months
- A full presentation on this latest pilot will occur in the near future

BioteQ Environmental Technologies

Brent Baker

bbaker@bioteq.ca