ARD IS NOT THE APOCALYPSE

A closed iron ore mine characterized by active ARD/ML and good water quality

Ron Nicholson, Brian Fraser, Michael Venhuis, Sean Shaw, Sarah Barabash, Erin Clyde

22th BC MEND ML-ARD Workshop Vancouver, BC 2-3 December 2015

Site History

- Mine opened in 1968
 - Joint venture between Dofasco and Cleveland-Cliffs
- 22 Million tonnes of iron pellets produced
- Shipped to Dofasco's Hamilton steel-making operations
- Mine Closed in March 1990
- Final Closure Plan "accepted" by Ontario Ministry of mines in 1995
- Numerous environmental studies completed by Dofasco, government agencies and other interested groups

Mine Rock Stockpiles

EcoMetrix

Mine Waste Management

- ARD/ML was emerging for the metal mine industry at time of mine operations
 - Site closed prior to requirement of Closure Plan's in Ontario
 - Company implemented a Closure Plan on own accord
- Mine waste management methods
 - Segregation of high sulphide material for storage in the tailings
 - Blasting of sulphide-rich zone above the final flood level in one pit
- Some sulphide mine rock not segregated prior to 1977
 - used for road building or rock stockpiles
 - resulting in local areas of acid drainage on-site

Acid Generation

SP-NE Stockpile

Acid Generation

East Embankment

Acid Drainage Quality

Parameter	Units	Max or Min Values				
рН	-	2.35				
Sulphate	mg/L	6720				
Aluminum	mg/L	218				
Cadmium	mg/L	0.01				
Chromium	mg/L	0.3				
Cobalt	mg/L	1.2				
Copper	mg/L	1.2				
Iron	mg/L	265				
Manganese	mg/L	85				
Nickel	mg/L	2.5				
Zinc	mg/L	3.2				

10

Mine Rock Sampling

- 73.2M tonnes mine rock
- Over 500 samples collected in 2014
- 210 Samples analysed
 - 46 Boreholes
 - 42 Test Pits

Almost 90% of Sulphur is Sulphide

Carbonate is a More Conservative Estimate of Neutralization Potential than Siderite-Corrected Sobek NP

*Sid-NP is Siderite-Corrected Modified Sobek

ARD Potential

Neutralization Potential Ratios

			_			Samples with		
	Mine rock stocknile	Number samples	Geometric	Minimum	Maximum	Carb-N	Carb-NPR < 1.0	
	otoonpho	Samples	moun			Number	Percent	
	NP-N	3	12.8	4.0	27.8	0	0%	
	EP-N	6	2.9	0.3	8.2	1	17%	
	EP-NE	6	1.7	0.5	7.0	1	17%	
Acidio	SP-NE	21	7.8	0.6	56.3	2	10%	
	SP-SW	15	8.3	0.7	30.6	2	13%	
	TP-N	2	11.7	11.3	12.2	0	0%	
	TP-NE	4	20.2	12.8	55.7	0	0%	
	TP-E	7	10.9	2.5	119.4	0	0%	
	WP-N	21	7.6	0.02	7.6	2	10%	
	WP-NE	6	6.0	0.7	18.6	1	17%	
	WP-S	16	30.3	2.1	733.3	0	0%	
	WP-SE	8	6.4	0.4	188.8	3	38%	
	WP-SW	15	62.9	6.7	568.0	0	0%	
Acidio	East Embankment	50	7.6	0.1	358.9	7	14%	
	Causeway	12	4.7	0.3	26.2	1	8%	
	Total	192	9.8	0.02	733	20	10%	

Will all Stockpiles go acidic with time?

How can we distinguish between Stockpiles?

Pore Water Chemistry in Rock Piles

Sulphide oxidation and carbonate consumption rates similar in all stockpiles

Depletion Rate Calculations

- Acid can be generated when Carbonate is depleted before Sulphide
- Porewater concentrations (SFE) give rates for;
 - Sulphide depletion using sulphate
 - Carbonate Depletion using Calcium (Ca) + Magnesium (Mg)
- Represent realistic rates in 25+ year old rock
- Geometric mean;
 - Ca and Mg concentrations in pore water samples
 - Sulphide and carbonate contents in solids

Depletion Rates

	Mine Rock Stockpile	Deplet (mgl	ion Rate /kg/a)	Sulphide Depletion Times	Carbonate Depletion Times
		Sulphide	Carbonate	(a)	(a)
-	NP-N	38	289	29	278
	EP-N	31	299	34	59
	EP-NE	48	428	24	27
Acidic	SP-NE	44	408	12	59
	SP-SW	47	394	15	84
	WP-N	76	514	14	91
	WP-NE	61	451	20	93
	WP-S	30	292	15	282
	WP-SE	45	372	14	62
	WP-SW	16	185	15	484
	TP-N	119	595	6	79
	TP-NE	11	172	39	302
	TP-E	72	509	6	52
Acidic	East Embankment	118	839	6	36

Sensitivity Analysis

- Effect of sulphide and carbonate depletion rates
- Ca+Mg/SO₄ ratio constrained between 1 and 2
- Scenarios included:
 - Scenario 1 \rightarrow geometric mean Ca+Mg and SO₄ rates
 - Scenario 2 \rightarrow 25th percentile Ca+Mg and SO₄ rates
 - Scenario 3 \rightarrow geometric mean Ca+Mg and 25th percentile SO₄ rates
 - Scenario 4 \rightarrow 75th percentile Ca+Mg and geometric mean SO₄ rates

Neutralization Reactions

Median (Ca+Mg)/SO₄ Ratio of about 1.3

Less than 2 NP for 1 AP (Effective and Efficient NP)

Ecol

Sensitivity Results

	Geomean Rates		25 th Percentile Rates		25 th Percentile SO ₄ Rates		75 th Percentile Ca/Mg Rates	
Scenario 1		Scenario 2		Scenario 3		Scenario 4		
Mine Rock Stockpile	Sulphide Depletion (a)	Carbonate Depletion (a)	Sulphide Depletion (a)	Carbonate Depletion (a)	Sulphide Depletion (a)	Carbonate Depletion (a)	Sulphide Depletion (a)	Carbonate Depletion (a)
NP-N	29	278	29	278	29	278	29	278
EP-N	34	59	37	63	37	59	34	54
EP-NE	24	27	49	35	49	27	24	16
SP-NE	12	59	35	129	35	59	12	21
SP-SW	15	84	20	102	20	84	15	64
WP-N	14	91	26	155	26	91	14	56
WP-NE	20	93	23	105	23	93	20	66
WP-S	14	243	20	264	20	243	14	174
WP-SE	14	62	22	78	22	62	14	47
WP-SW	15	484	29	700	29	484	15	388
TP-N	6	79	7	91	7	79	6	58
TP-NE	39	302	74	333	74	302	39	276
TP-E	6	52	11	83	11	52	6	34
East Embankment	6	36	23	110	23	36	6	11

Carbonate Depleted before Sulphide in Solids

Sensitivity Analysis

- Effect of carbonate availability
- To simulate these conditions:
 - Sulphide contents \rightarrow geometric mean values
 - Carbonate contents \rightarrow 50% of the geometric mean values
- Scenarios included:
 - Scenario 5 \rightarrow geometric mean Ca+Mg and SO₄ rates
 - Scenario 6 \rightarrow 25th percentile Ca+Mg and SO₄ rates
 - Scenario 7 \rightarrow geometric mean Ca+Mg and 25th percentile SO₄ rates
 - Scenario 8 \rightarrow 75th percentile Ca+Mg and geometric mean SO₄ rates

Sensitivity Results

	Geomean Rates Scenario 5		25 th Percentile Rates Scenario 6		25 th Percentile SO₄ Rates Scenario 7		75 th Percentile Ca/Mg Rates Scenario 8	
Mine Rock Stockpile	Sulphide Depletion (a)	Carbonate Depletion (a)	Sulphide Depletion (a)	Carbonate Depletion (a)	Sulphide Depletion (a)	Carbonate Depletion (a)	Sulphide Depletion (a)	Carbonate Depletion (a)
NP-N	29	139	29	139	29	139	29	139
EP-N	34	29	37	31	37	29	34	27
EP-NE	24	13	49	18	49	13	24	8
SP-NE	12	29	35	65	35	29	12	11
SP-SW	15	42	20	51	20	42	15	32
WP-N	14	45	26	78	26	45	14	28
WP-NE	20	47	23	53	23	47	20	33
WP-S	14	121	20	132	20	121	14	87
WP-SE	14	31	22	39	22	31	14	24
WP-SW	15	242	29	350	29	242	15	194
TP-N	6	40	7	45	7	40	6	29
TP-NE	39	151	74	167	74	151	39	138
TP-E	6	26	11	42	11	26	6	17
East Embankment	6	18	23	55	23	18	6	5

Stockpile Acid Production

- Acid Production is dependent on:
 - Relative availability of sulphide and carbonate phases in each stockpile
 - Variability in rates of sulphide and carbonate depletion
- For East Embankment, SP-NE, EP-N and EP-NE:
 - Higher depletion rates for carbonates suggest potential risk
 - Less available carbonates suggest potential risk
- Remaining stockpiles not expected to experience net acid production

27

INCORPORATED

- Water quality has been stable or improving at all sampling sites since mine closure
- Water quality at compliance points were less than PWQO levels for all COPCs
- Acid drainage associated with East Embankment and SP-NE do not negatively influence downstream water quality (STN-2)

Site Sediment Quality

600

letrix

 \bigcirc

Site Sediment Quality

- Similar temporal trends in core samples
 - Elevated concentrations at depths associated with onset of mining
 - Greatest increases associated with cores adjacent to East Embankment and SP-NE
- Stabilized and decreasing concentrations in upper sections at other stations
- 2014 and 2007 measured values reasonably predicted by model predictions
- Stabilization predicted in 10 years followed by declines

Conclusions

- ABA averages or median values in rock piles may not be sufficient to predict ARD in future
- Study results indicate that more in-depth investigations are sometimes required
- Use of realistic variations in calculated depletion rates and sulphide/carbonate availabilities in solids needed
- Demonstrated distinct differences in stockpile characteristics
 - not observed in ABA results

Conclusions

- Additional work is required to better understand what separates East Embankment, SP-NE, EP-N and EP-NE
- Isolated potential ARD/ML to 4 of 13 stockpiles
- Remaining stockpiles will not become net acid producing
- Monitoring will reduce risk to environment conditions for potential future ARD no greater than for existing piles

Conclusions

- Mitigation during operations prevented more potentially severe effects of ARD after closure
- Sulphide rock to tailings and underwater in pits was innovative at that time
- Water quality leaving the site meets closure plan objectives and remains protective of the environment

QUESTIONS?

Water-Filled Pit (Not a Lake)

