MEND BC December 1, 2016 Vancouver, Canada

Beneficial use of Springer Pit Lake at Mount Polley Mine

Jerry Vandenberg (Golder)
Paul Beddoes (Golder)
Shauna Litke (Mount Polley Mining Corporation)

Overview

Chronology of Springer Pit Lake

- Lines of evidence of passive water treatment
 - Pit lake model
 - Monitoring
 - Design criteria
- Removal of particulate metals
- Use of water treatment plant in 'passive' mode

Water Management at Mount Polley Mine

Springer Pit Barges

March 22, 2017

Chronology of Springer Pit Lake

Water Balance – Dec 1, 2015 – Jun 27, 2016

Pit Lake Conceptual Model

Water Quality Comparison

- <u>Under-predicted</u>: measured data above 95th percentile predictions
 - Mg, NO₃-
 - Total As, Se*
- **Accurate**: measured data between 5th and 95th percentile predictions
 - TDS, Ca, SO₄^{2-*}
 - Dissolved Sb, B, Cr, Fe, Mo, Ag
 - Total Sb, B, Mo*
- Over-predicted: measured data below 5th percentile predictions

8

- Cl-, NH₄+
- Dissolved Al, As, Cd, Co, Cu, Mn, Zn
- Total Al, Cd, Cr, Co, Cu*, Mn, Ag, V, Zn, PO₄^{3-*}

Under-predicted: Total Selenium

Initial Model Predictions

Updated Model Predictions

Accurate: Total Molybdenum

Initial Model Predictions

Updated Model Predictions

Accurate: Sulphate

Initial Model Predictions

Updated Model Predictions

Over-predicted: Total Phosphorus

Initial Model Predictions

Updated Model Predictions

Over-predicted: Total Copper

Initial Model Predictions

Updated Model Predictions

Pit Lake Monitoring

- Profile monitoring between tailings inflow and barge
- Weekly compliance monitoring of water treatment feed water
- Parameters
 - Field parameters
 - Total and dissolved metals
 - Anions and nutrients
 - TSS and turbidity

Turbidity, Temperature and TSS

Metals in Inflow and at Depths

Coloured bars represent different sample dates

Sedimentation Pond Design Criteria

■ Volume: 14 Mm³

Residence time: > 1 year

Surface area: 220,000 m²

- Sedimentation ponds typically designed to capture particles <5 μm</p>
- Based on Stoke's Law, Springer Pit would remove particles <2 μm</p>
- Based on particle size distribution of tailings, Springer Pit would remove
 ~95% of particles
- Observed removal rate closer to 100% of particles

What was removed from water column?

- Total suspended solids
- Turbidity
- Total phosphorus
- Dissolved aluminum
- Total metals:

Alumium	Arsenic	Barium
Beryllium	Cadmium	Chromium
Cobalt	Copper	Iron
Lead	Manganese	Nickel
Silicon	Silver	Thallium
Tin	Titanium	Vanadium
	Zinc	

Golder

Recent Profile from Springer Pit

SPP-1 September 20, 2016

Golder

Passive Treatment Mode

- Since Springer Pit was effectively providing water treatment, a passive mode was programmed in the water treatment plant
- When turbidity and TSS are low in inflows, dosing of coagulant, flocculent and microsand stops
- Water continues to pass through water treatment plant
- Turbidity/TSS monitored continuously at inflow and outflow

Future beneficial use of Springer Pit Lake

At Closure:

- Subaqueous disposal of stockpiled potentially acid generating waste rock
- Settling of metals and phosphorus in site drainage waters
- Batch reactor for selenium removal?

Golder

Acknowledgements

- Mount Polley Mine
- Imperial Metals Corporation
- SRK (Geochemistry)
- Tetra Tech (Hydrodynamic modelling)

22 March 22, 2017

Questions?

Golder