COMBINING IN SITU TREATMENT AND ACTIVE WATER TREATMENT: CASE STUDY AT SCHWARTZWALDER URANIUM MINE

JIM HARRINGTON

Alexco Environmental Group 171 N College, Fort Collins CO, 80524 USA JIMHARRINGTON@ALEXCORESOURCE.COM

Talk Overview

- In Situ Treatment: methods and applications for mines
- Schwartzwalder Mine history and water treatment process considerations
- In Situ Pretreatment at Schwartzwalder
- Active Water Treatment Process at Schwartzwalder
- Reverse Osmosis combined with In Situ Treatment
- Discussion

In Situ Treatment Applications

Primary water treatment

To achieve a licence/permit discharge standard

Pretreatment

To reduce constituent concentrations, reduce reagent requirements, or improve constituent ratios, or reduce the number of constituents requiring active treatment

Treatment waste product disposal

To increase permanence of disposal, reduce costs of disposal, allow waste to be stabilized on site

In Situ Treatment Settings

Open pit lakes

- Pond settings (tailings, seepage toes)
- Underground mine workings
- Groundwater affected by mine sources (wherever there is a hydraulic driver)

In Situ Treatment Examples

Primary water treatment

Sweetwater Mine (Se, U), Silver King Mine (Zn, Cd), Cr plumes

Pretreatment

Platoro Mine (As, Zn), 15 in-heap leach facilities (CN, N species, metals), Schwartzwalder Mine (U, Se, Mo)

Treatment waste product disposal

 Platoro Mine (Fe coagulation (As), lime precipitation (Zn, Mn, Fe) sludge), Schwartzwalder Mine (U, Se, Mo in RO concentrates)

Why In Situ Treatment?

6

- Typically lower capital costs than active water treatment because mine infrastructure (pit, u/g workings) is reused as the treatment vessel
- □ Anaerobic conditions can be created at source:
 - Benefit of preventing oxidative leaching
 - At site of in situ treatment: elevated Fe²⁺, alkalinity, DOC, sulphide, and some reductively dissolved trace metals
 - Trace metals precipitated as metal sulphides
- Treat source rather than wait till contaminant is collected
- Geochemical gradients (compare to stirred reactors)
 - Fe²⁺ to Fe³⁺, Mn²⁺ to Mn^{3+/4+}, pH and alkalinity gradients (CO₂ off-gassing)
- Enhances engineered controls (covers, water diversions, backfill, etc.)
- Enhances active treatment performance (if still required) because reduced sludge production, better Fe/trace metal ratio

Schwartzwalder Mine History

- 7
- Discovered by janitor Fred Schwartzwalder in 1949 near start of cold war; vein deposit
- Pitchblend mineral (UO₂/U₃O₈) hosted in gneiss, schist, quartzite
- Drove first adit 1953, produced 1955, and by 1957 was largest U mine in US
- 99% of Colorado U production came from Schwartzwalder U Mine
- □ 17 million lbs. U produced; 16 million lbs. U reserves
- Closed down in 2000
- Dewatering stopped in early 2000's

Schwartzwalder Mine, Colorado

Schwartzwalder Mine

Headlines You Don't Want

OPINION > **EDITORIALS**

Cotter, clean up your mine

By **THE DENVER POST** | newsroom@denverpost.com September 24, 2010 at 11:38 am

NEWS

Colorado regulators order Cotter to do more to stop uranium contamination of water

By KAREN CRUMMY

PUBLISHED: September 28, 2011 at 4:25 pm | UPDATED: May 2, 2016 at 8:07 am

Water Treatment Selection Process at Schwartzwalder Mine

- During operations, water treatment of dewatering water was part of U recovery process (IX resin)
- Upon receipt of order to start treatment, IX was installed for alluvial groundwater (mixed stream, waste rock, and mine water influence)
- IX resin fouling from Ca/Mg hardness, high Fe/Mn with alluvial water
- IX resin fouling much worse with mine water (3x higher hardness)
- RO with in situ pre-treatment was authorized as remedy to provide hydraulic control of the mine

Reverse Osmosis Objectives

- 12
- Dewater mine to at least 150' below Steve level; discharge at less than 30 µg/L U (i.e., 99.9% reduction)
- Maintain hydraulic control over the mine as alluvial fill is cleaned up
- Maintain hydraulic control until final remedy is implemented

RO Concentrate Disposal Options

- 13
- Surface water discharge
- Land Application (e.g., irrigation, road de-icing, dust control)
- Public works (sewer, etc.)
- Further concentration (evaporation, dryer/ concentrator/filter, secondary membrane treatment, VSEP, etc.)
- Deep well injection

Why In Situ Treatment

Before Treatment Average (8 samples 2011-2013)

- Uranium 25.75 mg/L
- Molybdenum 1.30 mg/L
- Selenium 0.118 mg/L

Benefits Summary: Pretreatment and Brine Disposal

- Provides lower starting point for RO
- Increases certainty achieving discharge criteria
- Allows for on-site RO concentrate management
- Prevents buildup of constituents of concern in mine pool

In Situ Pre-Treatment of Schwartzwalder Mine

Objectives:

- Reduce RO feed concentration of U, Se, Mo
- RO reject averages 99.4-99.7% of constituents
- Initial concentration: 25 mg/L U, 1.3 mg/L Mo, 0.12 mg/L Se
- Interim goals of in situ treatment: 3 mg/L U, 0.2 mg/L Mo, 0.05 mg/L Se
- Goal was expressed in terms of dissolved constituents since any discharge would involve filtering process

In Situ Layout

- Pumped from #2
 Shaft (~300' bgs)
- Reinject in #1 shaft (800'deep), #2 shaft (1160') or open stope behind bulkhead

Schwartzwalder Mine

Pretreatment Target Locations

Pretreatment Results: First 4 Months

Before Treatment Average (8 samples 2011-2013)

- Uranium 25.75 mg/L
- Molybdenum 1.30 mg/L
- Selenium 0.118 mg/L

After Treatment Average

(8 samples August-December 2013)

- Uranium 3.4 mg/L = 87%
 reduction
- Molybdenum 0.081 mg/L
 = 94% reduction
- Selenium <0.018 mg/L = >98.5% reduction

1:1,000+ year flood

- □ 5.5 day storm
- □ 14-19 inches
- Access to site was lost after September 2013 until summer 2015

Uranium Pretreatment Results

Molybdenum Pretreatment Results

RO Concentrate In Situ Treatment

Next Steps

24

- "Permanent" treatment facility constructed
 - Pumping from mine and alluvial sumps
 - Separate trains for mine water and alluvial water
 - Mine: pre-filter, RO: permeate conditioned and discharged, concentrate amended and reinjected
 - Alluvial: chemical precipitation (sludge amended and injected into mine), filtration, RO with permeated and concentrate comingled with mine waters
 - In situ pre-treatment campaign winter 2016-7
 - Alluvium removal 2017-2018
 - Negotiate stable discharge scenario with State of CO

Questions?

