
ANTAMINA	WASTE	ROCK	STUDY	

A	Ten-Year	Waste-Rock	Study:		
	
Lessons	Learned	from	MulCple	Scales	and	
Impact	on	PredicCon	
	



Project	goals	

Provide	Antamina	a	knowledge	base	to	support	
waste-rock	management	and	decision	making	

	
•  Opera;onal	criteria	
•  Closure	planning	
	



AN
TAM

IN
A	W

ASTE	RO
CK	STU

DY	

Site	descripCon	-	Antamina	

•  Located	at	4300-4800	MASL	
•  Alpine	climate	with	bimodal	

precipita;on	
•  Cu-Zn	skarn	deposit		
•  Mills	130	kt/day		
•  Waste	rock	produces	

drainage	with	circum-
neutral	pH	

•  Metals	of	concern	include	
As,	Cu,	Zn	and	Mo	

Antamina 



AN
TAM

IN
A	W

ASTE	RO
CK	STU

DY	

Polymetalic	skarn	
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MulC-scale	invesCgaCon	

Borehole	

Borehole	







1 Marble Diopside 

2 Intrusive 

3 Exoskarn 

4 Hornfels + 
Marble Diopside 

5 Hornfels + 
Intrusive 

Hydrology:	quanCty	and	Cming	of	drainage	
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Hydrology:	quanCty	and	Cming	of	drainage	

Sub-Lysimeters 

36	m	
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Discharge	hydrographs	from	piles	
! Dis;nct	fast	&	slow	flow	regimes	observed	
! Unique	response	for	each	pile	

	

Pile	2	–	fine	

Pile	1	–	coarse	
Pile	3	–	intermediate	
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EvaporaCon	
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Grain	size	!strong	control	
Inter-annual	variability	



AN
TAM

IN
A	W

ASTE	RO
CK	STU

DY	

EvaporaCon	(%	of	precipitaCon)	
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!	Large	differences	among	piles	
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Scale-up	of	evaporaCon	

Different	
geometries	

Test-pile	scale	

Full	scale	
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Scale-up	of	evaporaCon	

Different	
geometries	

Test-pile	scale	

Full	scale	
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Scale-up	of	evaporaCon	

Different	
geometries	

Test-pile	scale	

Full	scale	
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Scale-up	of	evaporaCon	

Test	pile	
for	scale	

Profile	of	
full-scale	
pile	
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Lessons	learned	

•  Evapora;on	from	uncovered	waste	rock	greatest	
uncertainty	in	water	balance	

•  Evapora;on	difficult	to	predict	from	grain-size	
distribu;on	and	local	climate	

•  Local	evapora;on	strongly	depends	upon	
material	type	and	surface	condi;on	

! Easy	to	measure	through	lysimeter	experiments	
at	test-pile	scale		

𝑃=𝐸𝑇+𝐷+𝑅𝑂		
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Soil-cover	system	

•  Objec;ve:	Determine	the	best	closure	alterna;ve	for	
the	waste-rock	

•  How?		
•  Evaluate	the	performance	of	four	cover	systems	

and	one	control	system,	by	measuring	infiltra;on	
and	runoff	(4	years	of	monitoring).	

•  Measure	in-situ	soil	proper;es	acer	construc;on.	
•  Evaluate	alterna;ves	to	improve	cover	

performance	using	SoilCover	models.	
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Cover	experiment	lysimeters	

15	m	
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Cover	experiments	
5	test	covers	

Instrumenta;on	huts	
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Cover	designs	

Lysimeter	

Cover	Layers	

Layer	1	 Layer	2	

Material	 Thickness	 Material	 Thickness	

#1	
Compacted	Glacial	

Till	
600	mm	 Topsoil	 300	mm	

#2	
Non-comp.	Glacial	

Till	
600	mm	 Topsoil	 300	mm	

#3	 None	(Control)	 -	 -	 -	

#4	 -	 -	 Topsoil	 300	mm	

#5	
Compacted	
Colluvium	

600	mm	 Topsoil	 300	mm	
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Cover	System	Performance	

70%	percola;on	
(May	2014)	

60%	percola;on	
(May	2014)	

Not	fully	
func;onal	
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InfiltraCon	

•  Covered	waste	rock:	41%	-	70%	of	
precipita;on	

•  Uncovered	test	piles:	60%	-	75%	of	
precipita;on	

Covers	have	not	reduced	infiltra;on	
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Lessons	learned	

•  Cover	performance	depends	on	weather	AND	cover	
characteris;cs.	

•  Net	infiltra;on>50%	of	total	precipita;on.	
•  No	runoff.	Why?	Rainfall	intensity	not	high	enough	+	

higher	KSAT	of	low	permeability	barrier	material.	
•  Compac;on	of	barrier	layer:	not	an	advantage.	
•  Laboratory	soil	proper;es	could	not	be	replicated	in	the	

field.	
•  Performance	might	be	improved,	but	at	risk	of	erosion	

problems.	
•  Field	study:	necessary	to	account	for	local/specific	

condi;ons	and	to	assess	predic;ons.		
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Transport	in	waste	rock	

January	2010		
LiBr		Tracer	experiment	



AN
TAM

IN
A	W

ASTE	RO
CK	STU

DY	

Tracer	
break	
through	
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Tracer	breakthrough	

slow	
~20	%	of	mass	

very	fast	
>1	%	of	mass	

matrix	
~80	%	of	mass	

𝐾~ ​11 𝑚/400 𝑑 =3×​10↑−7  𝑚/𝑠 	
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MulC-permeability	system	

Very	fast	
•  >1%	mass	through	pile	in	
hours	to	few	days	

Matrix	flow	
•  ~80	%	mass	“conven;onal”	
unsaturated	flow	

Slow	flow	paths,	
“immobile”	zones	

•  ~20	%	mass	

Van	Genuchten	and	Wierenga		
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Lessons	learned	

•  Heterogeneous	waste-rock	best	conceptualized	
as	a	mul;-permeability	system	

•  Slow/immobile	zones	
•  Implica;ons	for	geochemistry:	ongoing	
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Release	and	a\enuaCon	mechanisms	

Methods	
•  Microscopies	
•  Quan;ta;ve	mineralogy:	XRD,	EDS	
•  Mineral	Libera;on	Analysis	
•  Bulk	acid-base	accoun;ng	
•  Sequen;al	extrac;ons	on	weathered	rocks	
•  Humidity	cells	
•  Field	barrels	
•  Depth	profiles	from	boreholes	in	full-scale	piles	
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Microenvironments	

31	

Piung	in	pyrrho;te	beneath	microbially	
populated	schwertmannite	
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Microenvironments	

Pyrrho;te	beneath	microbially	inhabited	
schwertmannite	has	been	more	severely	
weathered	then	uncovered	surfaces	
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Focused	ion	beam	(FIB)	

FIB	cut	through	iron	oxide	coa;ng	exposing	
cross	sec;on	
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Energy	Dispersive	Spectroscopy	(EDS)	

0	 10	 20	 30	 40	
Atomic	%	

Fe	Si S iron	sulfate	

pure	Iron	oxide	
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Microenvironments	

Geochemically	isolated	condi;ons	provided	by	the	porosity	
of	the	schwertmannite	bound	by	the	overlying	non-porous	
crust	
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Microscopy	
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SequenCal	extracCons	
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Lessons	learned	

•  Op;cal,	SEM,	and	quan;ta;ve	mineralogy	to	
iden;fy	processes	

! Establish	process-based	models	

•  There	is	a	dis;nc;on	between	bulk	(eg	ABA)	and	
aggregated	behaviors:	complementary	
informa;on	
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! Avenuated	in	two	mineral	phases:	
◦  Powellite	(CaMoO4)		
◦ Wulfenite	(PbMoO4)	

Powellite	crystals	

Molybdenum	a\enuaCon	
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A\enuaCon	and	effects	of	mixing	

Can	stacking/mixing	avenuate	metals?	
Hypothesis:	Pb	–	rich	rock	promotes	avenua;on	of	Mo	

by	forma;on	
of	wulfenite	
(PbMoO4)	
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Stacked	field	barrels	

Above:	Mo-rich	intrusives	

Below:	Pb-rich	black	marble	
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Mo	a\enuaCon	
Mo releasing 

(Intrusive)  
 

Pb-containing 
(Black Marble) 
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Mo	a\enuaCon	
Mo releasing 

(Intrusive)  
 

Pb-containing 
(Black Marble) 
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Lessons	learned	

•  Mo	in	solu;on	can	be	strongly	avenuated	by	Pb	
to	form	wulfenite	

•  With	sufficient	contact	;me,	Mo	in	solu;on	may	
be	avenuated	in	powellite	(CaMoO4)		

•  Management	strategy:	stack	avenua;ng	
material	below	releasing	material	

•  Sequence	of	encounter	important	
–  Capacity?	
–  Passiva;on?	
–  Channeling/preferen;al	flow?	
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Mixing	and	rapid	transiCon	

Neutral,	
low	Cu	
drainage	

Neutral,	
low	Cu	
drainage	

Low	pH,	
high	Cu	
drainage	
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Overview:	Rapid	geochemical	transiCon	

•  During	a	two-month	period:	
–  pH	dropped		

•  pH	7.7	"	pH	6.4	

–  Cu	increased		
•  	0.01	mg/L	"	67.0	mg/L	

–  Zn	increased		
•  5.9	mg/L	"	41.9	mg/L	

–  Accumula;on	of	
predominantly	amorphous	
precipitate	
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Models	

George	E.	P.	Box:		“All	models	are	wrong	but	some	
are	useful.”	
Aristotle:	“It	is	the	mark	of	an	educated	mind	to	
rest	sa;sfied	with	the	degree	of	precision	which	
the	nature	of	the	subject	admits	and	not	to	seek	
exactness	where	only	an	approxima;on	is	
possible.”	
	
! Model	should	be	fit	for	its	purpose	
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1	m	

Conceptual	Model	

48	

O2,	CO2	O2,	CO2	O2,	CO2	 O2,	CO2	

Basal	Layer	
(UBC2-0A)	

10
	m

	

36	m	 1	m	

20	control	volumes	in	z-direcCon	

back	
front	

12	m	 12	m	 12	m	

1	control	volumes	in	y-direcCon	
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ProbabilisCc	stream-tube	model	
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ProbabilisCc	stream-tube	model	

One	possible	distribu;on	of	materials	in	pile	
(realiza;on)	

m	

m	

m	

m	
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PredicCon	of	stream-tube	and	total-pile	
drainage	
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Bulk	neutralizaCon	potenCal	raCo	versus	
probability	of	drainage	pH	at	different	Cmes	

What	bulk	
NPR	
provides	
good-
quality	
drainage	
most	of	
the	;me?	
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Lessons	learned	

•  Independent	ver;cal	flow	paths	with	mixing	at	
bovom	

•  Stream-tube	assessment	of	effects	of	
heterogeneity	

Full-scale	
•  Mixing	at	capillary	breaks	(traffic	surfaces)	and	
bovom	of	pile	

•  Effects	of	traffic	surfaces,	heat	and	gas:	ongoing	
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Intrinsic	 Apparent	
rate	at	which	mineral	is	
chemically	transformed	
by	reac;on	

rate	at	which	mass	is	
released	into	solu;on	
and	transported	out	of	
system	
	

Rates:	intrinsic	versus	apparent	

Kine;c	&	field	barrels,	pile	drainage!	apparent	
rates	
	
Oxygen	consump;on	!	intrinsic	rates	
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Mass	transported	out	of	system	in	water	in	;me	Δt	
Mass	of	source	rock	×	Δt	

CompuCng	rates	

Units	(​𝑚𝑔/𝑘𝑔∙𝑤𝑘 )	



Apparent	Zn	rates:	field	barrels	and	piles		
1	

0.1	

0.01	

0.001	

0.0001	

Pile	

(​𝑚
𝑔/
𝑘𝑔

∙𝑤
𝑘 
)	



Apparent	Zn	rates:	field	cells	and	piles		
1	

0.1	

0.01	

0.001	

0.0001	

Pile	

(​𝑚
𝑔/
𝑘𝑔

∙𝑤
𝑘 
)	

field	barrel	rates	
always	faster	than	
test	pile	rates	
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Scale	effect:	Cu	

Loca;on	 ​𝐹𝑖𝑒𝑙𝑑 𝑏𝑎𝑟𝑟𝑒𝑙 𝑟𝑎𝑡𝑒/𝑃𝑖𝑙𝑒 
𝑟𝑎𝑡𝑒 	

Pile	1	 36	
Pile	2	 49	
Pile	3	 15	
Pile	4:	type	B	 5.6	
Pile	4:	type	C	 37	
Pile	5:	type	A	 436	
Pile	5:	type	C	 166	
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Pile	2		
	
Oxygen	
deple;on	
	
Heat	&	CO2	
produc;on	
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Conceptual	model:	Oxygen	transport	
effects	

Less	oxidaCon	than	under	fully	
aerobic	condiCons	
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Lessons	learned	

•  Dis;nct	rates	determined	from	field	barrels	and	
experimental	piles	

•  Value	of	lab-scale	rates?	
•  Experimental	–	pile	scale	to	full-scale-pile	scale	

–  Heat	could	increase	rates	
–  Gas	transport	limita;ons	could	decrease	rates	
–  Flow	channeling	could	decrease	release	rates.	
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