A Ten-Year Waste-Rock Study:

Lessons Learned from Multiple Scales and Impact on Prediction

ANTAMINA WASTE ROCK STUDY

Project goals

Provide Antamina a knowledge base to support waste-rock management and decision making

Operational criteria

• Closure planning

ANTAMIN

NSERC CRSNG

Teck

Site description - Antamina

- Located at 4300-4800 MASL
- Alpine climate with bimodal precipitation
- Cu-Zn skarn deposit
- Mills 130 kt/day
- Waste rock produces drainage with circumneutral pH
- Metals of concern include As, Cu, Zn and Mo

Polymetalic skarn

Antamina Geology

ANTAMINA

NSERC CRSNG

ANTAMINA

NSERC CRSNG

Teck

Multi-scale investigation

Hydrology: quantity and timing of drainage

5 Hornfels +

Intrusive

4 Hornfels + Marble Diopside

3 Exoskarn

2 Intrusive

1 Marble Diopside

Hydrology: quantity and timing of drainage

Sub-Lysimeters

36 m

ANTANINA

ANTAMINA

NSERC CRSNG

Teck

Discharge hydrographs from piles

- Distinct fast & slow flow regimes observed
- Unique response for each pile

Evaporation

Grain size → strong control Inter-annual variability

Evaporation (% of precipitation)

→ Large differences among piles

Scale-up of evaporation

Different geometries

Full scale

Scale-up of evaporation

Test-pile scale

Different geometries

Scale-up of evaporation

Different geometries

Full scale

K STUDY

ANTAMINA

NSERC CRSNG

Teck

ANTAYINA

Lessons learned

- Evaporation from uncovered waste rock greatest uncertainty in water balance
- Evaporation difficult to predict from grain-size distribution and local climate
- Local evaporation strongly depends upon material type and surface condition
- Easy to measure through lysimeter experiments at test-pile scale

$$P = ET + D + RO$$

ANTAVINA

Soil-cover system

- Objective: Determine the best closure alternative for the waste-rock
- How?
 - Evaluate the performance of four cover systems and one control system, by measuring infiltration and runoff (4 years of monitoring).
 - Measure in-situ soil properties after construction.
 - Evaluate alternatives to improve cover performance using SoilCover models.

NSERC CRSNG

Cover experiment lysimeters

NSERC CRSNG

UBC

Cover experiments

5 test covers

Instrumentation huts

AN	TAMINA	A HILL

Cover designs

	Cover Layers				
Lysimeter	Layer 1		Layer 2		
	Material	Thickness	Material	Thickness	
#1	Compacted Glacial Till	600 mm	Topsoil	300 mm	
#2	Non-comp. Glacial Till	600 mm	Topsoil	300 mm	
#3	None (Control)	-	_	-	
#4	-	-	Topsoil	300 mm	
#5	Compacted Colluvium	600 mm	Topsoil	300 mm	

ANTAMINA

Cover System Performance

Infiltration

- Covered waste rock: 41% 70% of precipitation
- Uncovered test piles: 60% 75% of precipitation

Covers have not reduced infiltration

NSERC CRSNG

ANTAMINA

- NSERC CRSNG
- UBC

Lessons learned

- Cover performance depends on weather AND cover characteristics.
- Net infiltration>50% of total precipitation.
- No runoff. Why? Rainfall intensity not high enough + higher K_{SAT} of low permeability barrier material.
- Compaction of barrier layer: not an advantage.
- Laboratory soil properties could not be replicated in the field.
- Performance might be improved, but at risk of erosion problems.
- Field study: necessary to account for local/specific conditions and to assess predictions.

Transport in waste rock

January 2010 LiBr Tracer experiment

ANTAMINA

NSERC CRSNG

Teck

Tracer breakthrough

Multi-permeability system

Very fast

 >1% mass through pile in hours to few days

Matrix flow

- ~80 % mass "conventional"
 - unsaturated flow

Slow flow paths,

"immobile" zones

• ~20 % mass

Fig. 1—Schematic diagram of unsaturated aggregated porous medium. (A) Actual model. (B) Simplified model. The shading patterns in A and B represent the same regions.

Van Genuchten and Wierenga

ΔΝΤΔΜΙΝΔ

NSERC CRSNG

Teck

Lessons learned

- Heterogeneous waste-rock best conceptualized as a multi-permeability system
- Slow/immobile zones
- Implications for geochemistry: ongoing

Release and attenuation mechanisms

Methods

- Microscopies
- Quantitative mineralogy: XRD, EDS
- Mineral Liberation Analysis
- Bulk acid-base accounting
- Sequential extractions on weathered rocks
- Humidity cells
- Field barrels
- Depth profiles from boreholes in full-scale piles

ANTAMINA

31

Microenvironments

Pitting in pyrrhotite beneath microbially populated schwertmannite

Microenvironments

Pyrrhotite beneath microbially inhabited schwertmannite has been more severely weathered then uncovered surfaces

Focused ion beam (FIB)

FIB cut through iron oxide coating exposing cross section

Energy Dispersive Spectroscopy (EDS)

ANTAMINA

Microenvironments

Geochemically isolated conditions provided by the porosity of the schwertmannite bound by the overlying non-porous crust

ANTAVINA

Microscopy

Iron oxide of weathered sulfides

> Iron oxide coating non-sulfide minerals

Iron oxide coating sulfide minerals

Lessons learned

- Optical, SEM, and quantitative mineralogy to identify processes
- Establish process-based models
- There is a distinction between bulk (eg ABA) and aggregated behaviors: complementary information

ANTAMINA

Molybdenum attenuation

- Attenuated in two mineral phases:
 - Powellite (CaMoO₄)
 - Wulfenite (PbMoO₄)

Powellite crystals

ANTAMINA

Attenuation and effects of mixing

Can stacking/mixing attenuate metals? Hypothesis: Pb – rich rock promotes attenuation of Mo

by formation of wulfenite (PbMoO4)

NSERC CRSNG Teck

Stacked field barrels

Above: Mo-rich intrusives

Below: Pb-rich black marble

ANTAMINA

NSERC CRSNG

Teck

35

ANTANINA

NSERC CRSNG

Lessons learned

- Mo in solution can be strongly attenuated by Pb to form wulfenite
- With sufficient contact time, Mo in solution may be attenuated in powellite (CaMoO₄)
- Management strategy: stack attenuating material below releasing material
- Sequence of encounter important
 - Capacity?
 - Passivation?
 - Channeling/preferential flow?

ANTANINA

Mixing and rapid transition

Overview: Rapid geochemical transition

- During a two-month period:
 - pH dropped
 - pH 7.7 → pH 6.4
 - Cu increased
 - 0.01 mg/L → 67.0 mg/L
 - Zn increased
 - 5.9 mg/L → 41.9 mg/L
 - Accumulation of predominantly amorphous precipitate

ANTAMIN

Models

George E. P. Box: "All models are wrong but some are useful."

Aristotle: "It is the mark of an educated mind to rest satisfied with the degree of precision which the nature of the subject admits and not to seek exactness where only an approximation is possible."

➔ Model should be fit for its purpose

ANTAMINA

NSERC CRSNG

Teck

BC

Conceptual Model

20 control volumes in z-direction 1 control volumes in y-direction 1 m

12 m

12 m

С

12 m

⋛

1 m

ANTANINA

Probabilistic stream-tube model

Probabilistic stream-tube model

One possible distribution of materials in pile (realization)

ANTAMINA

NSERC CRSNG

Teck

Prediction of stream-tube and total-pile drainage SO₄ #1 SO4 #2 Conc. [mg/L] Conc. [mg/L] 04 Individual ST (conc) Individual ST (conc) Mixed Drainage (loading) Mixed Drainage (loading) 10³ 10³ 200 400 1000 200 400 0 600 800 600 800 1000 0 pH #1 pH #2 8 8 6 6 [Hd] [Hd] Individual ST Individual ST 4 4

all x-axes: time (years)

ANTAMINA

Bulk neutralization potential ratio versus probability of drainage pH at different times

What bulk NPR provides goodquality drainage most of the time?

ANTANINA

Lessons learned

- Independent vertical flow paths with mixing at bottom
- Stream-tube assessment of effects of heterogeneity

Full-scale

- Mixing at capillary breaks (traffic surfaces) and bottom of pile
- Effects of traffic surfaces, heat and gas: ongoing

ANTANINA

UBC

Rates: intrinsic versus apparent

Intrinsic

rate at which mineral is chemically transformed by reaction

Apparent

rate at which mass is released into solution and transported out of system

Kinetic & field barrels, pile drainage → apparent rates

Oxygen consumption \rightarrow intrinsic rates

NSERC CRSNG

Computing rates

Mass transported out of system in water in time Δt

Mass of source rock $\times \Delta t$

Apparent Zn rates: field barrels and piles

(mg/kg·wk)

Apparent Zn rates: field cells and piles

(mg/kg·wk)

Scale effect: Cu

Location	Field barrel rate/Pile rate		
Pile 1	36		
Pile 2	49		
Pile 3	15		
Pile 4: type B	5.6		
Pile 4: type C	37		
Pile 5: type A	436		
Pile 5: type C	166		

νιδμιν

NSERC Crsng

Teck

Conceptual model: Oxygen transport effects

Lessons learned

- Distinct rates determined from field barrels and experimental piles
- Value of lab-scale rates?
- Experimental pile scale to full-scale-pile scale
 - Heat could increase rates
 - Gas transport limitations could decrease rates
 - Flow channeling could decrease release rates.

Celedonio Aranda Bevin Harrison Roberto Manrique Antonio Mendoza Michael Sanchez

Randy Blaskovich Stephane Brienne Henri Letient

Bern Klein Uli Mayer Leslie Smith Ward Wilson Roger Beckie

