

Elevated Uranium and Arsenic Concentrations in Baseline Water Quality at the Coffee Gold Project: Implications for Geochemical Predictions

John Dockrey¹, David Flather¹, Laura Findlater¹, Scott Jackson, ¹ Jordi Helsen¹, James Scott² and Jennie Gjertsen²

> ¹Lorax Environmental Services Ltd., Vancouver, Canada ²Goldcorp Inc., Vancouver, Canada

> > 24TH Annual BC MEND ML/ARD Workshop November 29-30, 2017

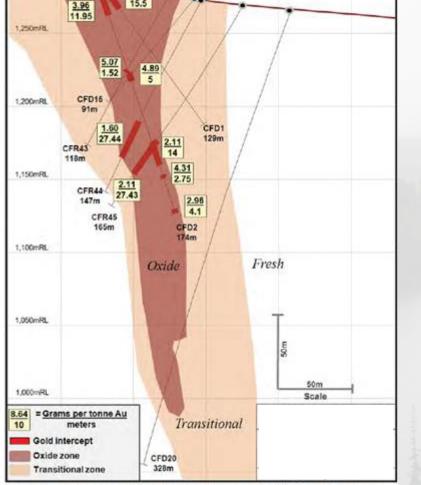
Lorax Environmental Services Ltd.

Overview

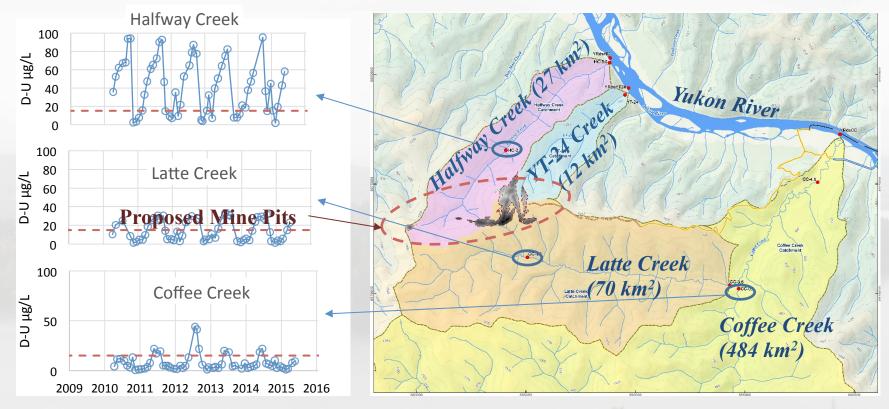
- Elevated metal(loid) concentrations are often observed in surface and groundwater surrounding mineral deposits
 - Investigating elevated metal concentrations in the baseline environment has the potential to inform the geochemical characterization of local bedrock
- This approach has been applied to the Coffee Gold Project, where elevated U and As observed in baseline water quality.
- The behaviour of these elements can be explained by using a combination of first principles and data collected as part of the geochemical characterization program
- This understanding of the geochemical baseline environment has a number of implications for source term predictions and mine waste management strategies.

Coffee Gold Project: Location

- Located 130 km south of Dawson in western Yukon
- The project is on the traditional territory of the Tr'ondëk Hwëch'in and the asserted territory of the White River First

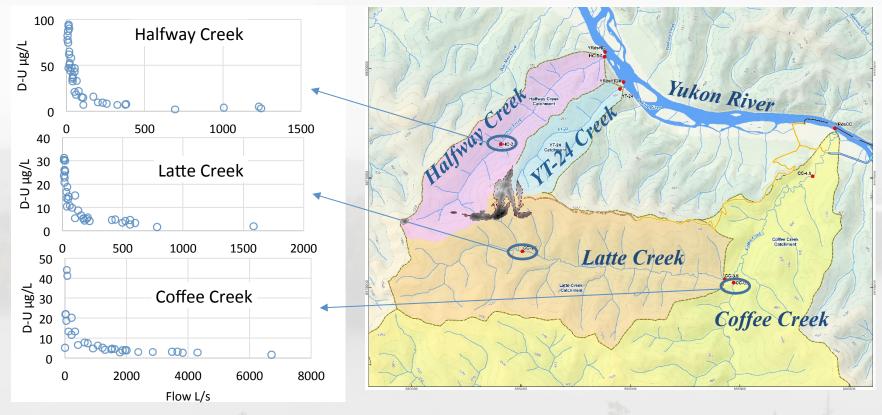

Lorax Provionmental Services Ltd.

17.07



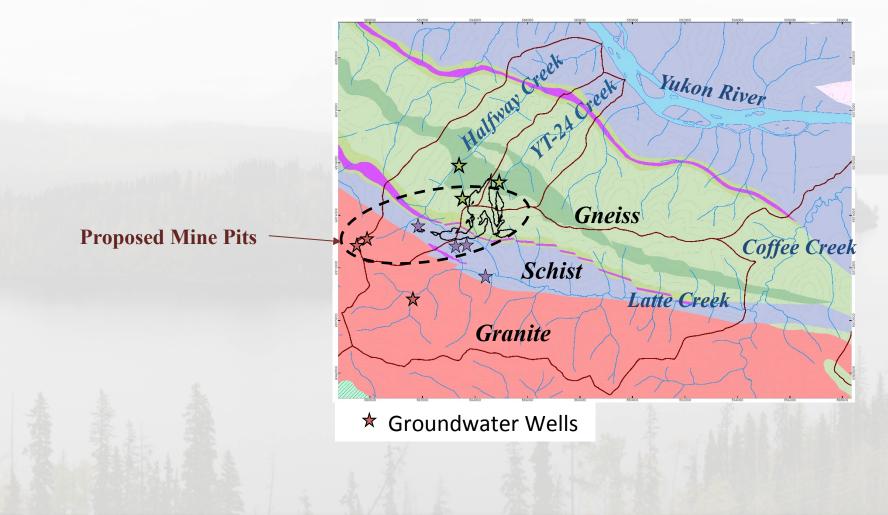
- Gold mineralization at the site is hydrothermal in origin and structurally controlled.
- Structural weaknesses associated with gold mineralization have allowed for extensive in-situ weathering and oxidation along near-vertical corridors. Weathering horizons include:
 - Oxide zone
 - Transition Zone
 - Fresh (unweathered) zone
- Gold bearing structures transect three distinct lithologies:
 - Gneiss
 - Schist
 - Granite

Surface Water Quality Monitoring: Uranium

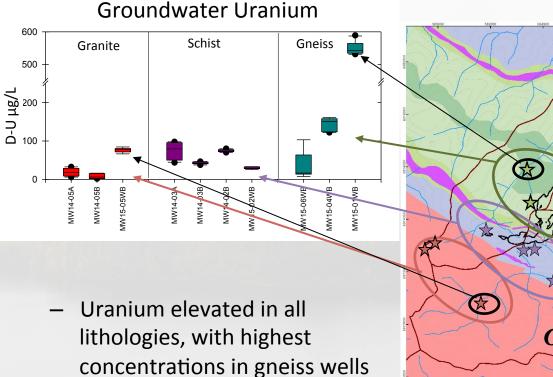


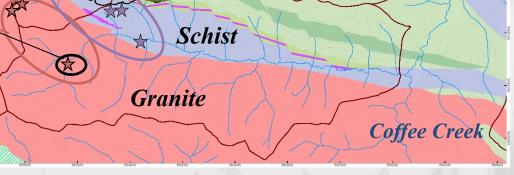
- Naturally elevated uranium is observed in surface water
 - Typical surface water in Canada is between 1 and 3 μ g/L
 - Site maxima range from ~30 to 100 µg/L
 - Uranium concentrations are regionally elevated as shown by Coffee Creek
 - Strong seasonality to U concentrations

•


Surface Water Quality Monitoring: Uranium

- Inverse relationship exists between flow and U concentration.
 - High flow conditions (freshet, high runoff); Surface water flow >>> groundwater discharge = low [U]
 - Low flow conditions (winter, low runoff); Surface water flow <<< groundwater discharge = high [U]
- Indicates that groundwater is the dominant source of U in these catchments


Groundwater Quality Monitoring: Uranium



Groundwater Quality Monitoring: Uranium

Yukon River

 Peak U concentrations are not adjacent to mineralization zones.

Gneiss

 Results are consistent with surface water data, which indicated that source of uranium is groundwater seepage

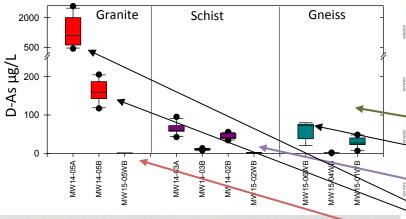
Groundwater Quality Monitoring: Arsenic

Gneiss

Schist

 \mathbf{x}

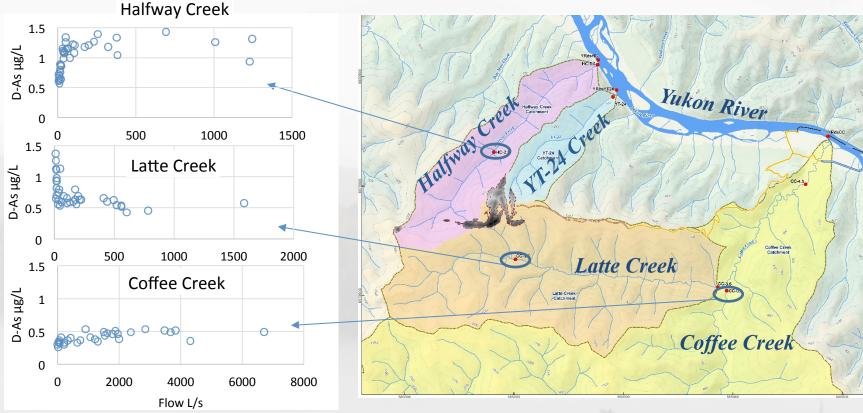
3


Granite

×

な

Yukon River

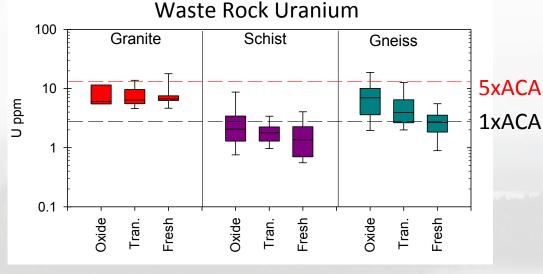


- Arsenic concentrations are also elevated in groundwater
 - Highest As concentrations observed in granite wells
 - In contrast to U, peak As concentrations tend to be adjacent to mineralization zones.

Coffee Creek

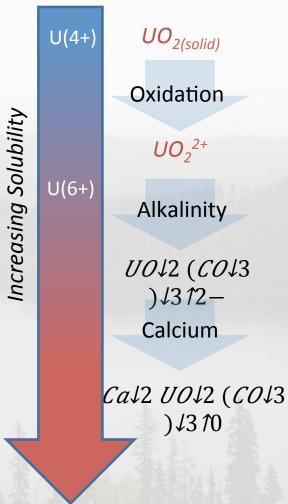
Arsenic concentration in relation to flow

- Elevated [As] in groundwater does not manifest as high [As] in surface water
 - Seasonal signature of arsenic:
 - Halfway and Coffee Creeks show lowest concentrations during low flow
 - Latte Creek shows peak concentrations during low flow
- Data shows that As groundwater load is being attenuated.


Key Questions:

- What processes lead to the mobilization of arsenic and uranium in groundwater?
- Why does uranium remain elevated in surface water while arsenic appears to be attenuated?

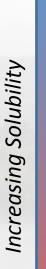
Uranium Enrichment in Bedrock


Average Continental Abundance (ACA) = 2.7 ppm

Uranium

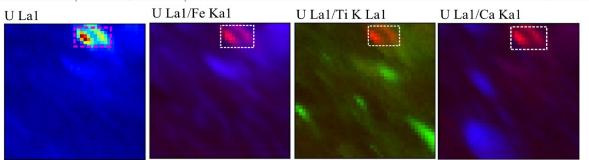
- Slightly elevated in gneiss and granite (1-5x ACA); not elevated in schist (\leq 1x ACA).
- Ore shows similarly degree of U enrichment as waste rock.
- The lack of significant U enrichment bedrock indicates that U must be present in a form that is readily soluble in groundwater and surface water.

Uranium Solubility



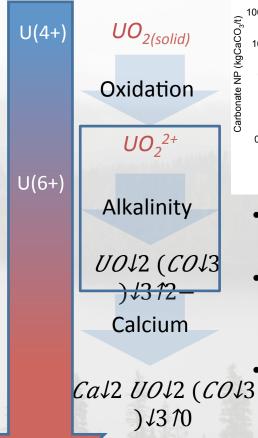
Uranium Solubility

 Dependent on oxidation state and availability of complexing ligands

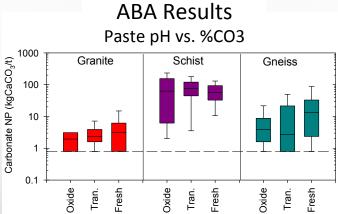


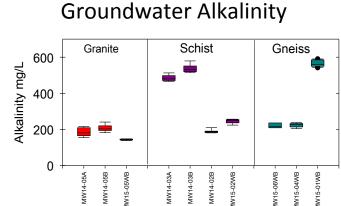
Uranium Solid-Phase Speciation Results

UO_{2(solid)} U(4+) Oxidation UO_{2}^{2+} U(6+) Alkalinity *UO*¹2 (*CO*¹3)1312-Calcium *Ca*¹2 *UO*¹2 (*CO*¹3)


)1310

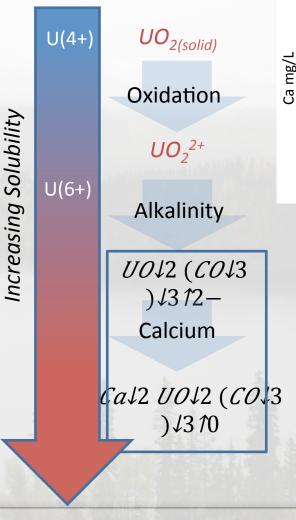
uXRF micrograph of Fresh Gneiss Waste Rock (67% U⁶⁺, 33% U⁴⁺)

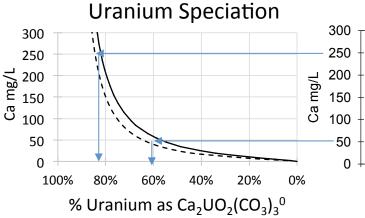

- The two dominant oxidation states of U in the environment are +4 and +6
- XANES measured relative abundance of U(6+) and U(4+)
 - Oxide Zone: 90% 100% U(6+)
 Transition Zone: 17% 49% U(6+)
 Fresh Zone: 27% 67% U(6+)
- Results show that even though the abundance is low in bedrock, U is present in the relatively soluble U(6+) oxidation state throughout the deposit.


Uranium Solubility: Alkalinity Availability

•

Increasing Solubility





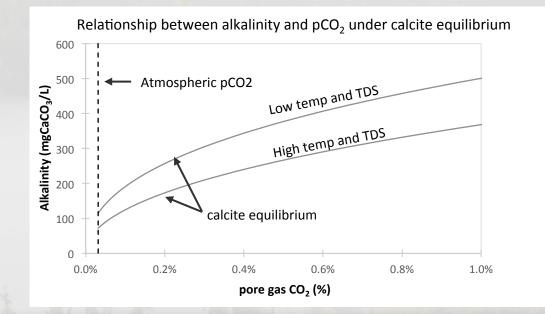

- In neutral pH environments the solubility of U(6+) is • dependent on CO₃ availability.
 - In-situ weathering has lead to the depletion of sulphur minerals and the oxidation of reduced mineral phases, but has not removed carbonate content.
 - Elevated alkalinity in ambient groundwater supports U(6+) leaching and mobility.

Uranium Solubility: Modelled Speciation

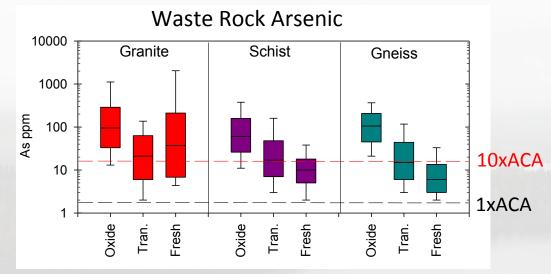
- Mobility of *UOJ*2 (*COJ*3)*J*3*1*2can still be limited by sorption to mineral surfaces.
- Formation of *Ca*¹2 *UO*¹2 (*CO*¹3) ¹310 ternary complex further enhances solubility.
 - Calcium is the dominant cation in most groundwater
- Groundwater chemistry supports a majority of U as ternary Ca-U-CO₃ complex.
- Species should be equally soluble in surface water and groundwater environments

Lorax Environmental Services Ltd.

www.lorax.ca


Uranium Solubility: Summary

- Elevated uranium concentrations in the baseline environment can be attributed to:
 - Enrichment of uranium in gneiss and granite host rock
 - Occurrence of uranium in oxidized [U(6+)] state
 - Alkaline and calcium rich groundwater and surface water which supports release and mobility of U(6+)


Implications for U Prediction and Management

- Uranium release and mobility will be enhanced in mine waste environments with high alkalinity and calcium in pore water.
- In carbonate buffered waste rock dumps, alkalinity is in large part determined by the partial pressure of CO₂ in pore gas. Uranium leaching will be accelerated in environments with limited gas exchange.
- Conversely, environments where pore gas CO₂ and Ca are not able to accumulate will limit U release (e.g., pit wall rock).

Arsenic Enrichment in Bedrock

Average Continental Abundance (ACA) = 1.8 ppm

Arsenic

- Elevated in all rock types, with waste rock typically equal to or exceeding 10xACA
- Ore is significantly enriched in As (>1,000 ppm) compared to waste rock

Lorax Environmental Services Ltd.

Arsenic Solid Phase Speciation

> SEM micrograph showing occurrence of arsenian pyrite and arsenopyrite within illite matrix.

- XANES analysis found As primarily present primarily As(+5) and As(-1)
 - Oxide Zone:
 - Transition Zone:
 - Fresh Zone:

- 100% As(5+) 91% - 100% As(5+)
- 20% 59% As(5+)

haerobic As(-1) sulphide minerals

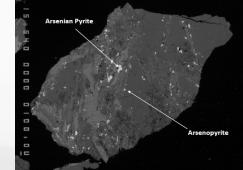
Dominant oxidation

state in host rock

In-situ

Oxidation

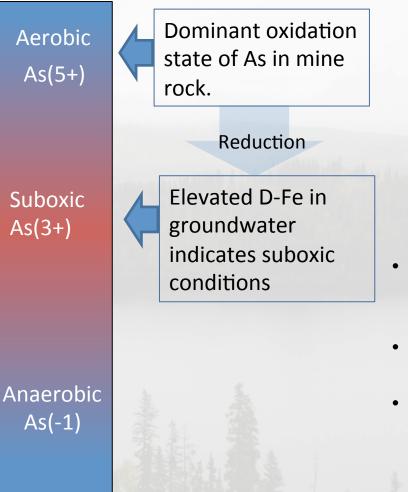
 As(5+) is associated with Fe-oxide and Fe-arsenate minerals.

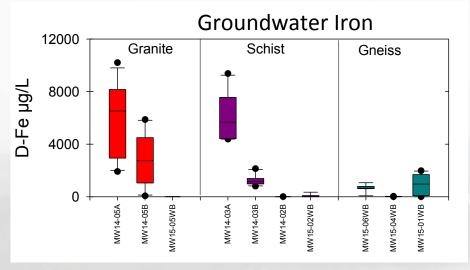


Aerobic

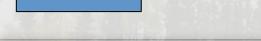
As(5+)

Suboxic


As(3+)



Anaerobic



Arsenic Solubility: Redox Controls

- Groundwater chemistry shows that conditions are
 sufficiently reducing to support reductive dissolution of
 Fe-oxide minerals
- Reduction of As(5+) to As(3+) occurs concomitantly with Fe reduction.
- Elevated As in groundwater is likely due to groundwater being sufficiently reducing to support As(3+) formation and stability

Aerobic

As(5+)

Suboxic

Anaerobic

As(-1)

As(3+)

Aerobic surface

As(5+) formation

Oxidation

Elevated D-Fe in

indicates suboxic

groundwater

conditions

water support

Arsenic Solubility: Attenuation Processes

Why is arsenic absent from surface water?

- Exposure to atmospheric oxygen when will result in the oxidation of As(3+) and Fe(2+)
 - As(5+) is readily sorbed by iron oxide mineral surfaces
- Aerobic metal leaching tests show that As solubility is related to Fe content and pH.
 - Supports viability of sorption attenuation mechanism

Arsenic Solubility Summary

- Elevated arsenic concentrations in groundwater can be attributed to:
 - High degree of arsenic enrichment in ore and waste rock around the deposit.
 - Occurrence of arsenic in an oxidized state which is prone to reductive dissolution in suboxic groundwater environments.
- Low arsenic in surface water can be attributed to:
 - Oxidation of D-As and D-Fe when groundwater exposed to atmospheric oxygen.
 - Attenuation of As(5+): sorption onto Fe-oxide surfaces.

Implications for Arsenic Prediction and Management

- Placement of material with high As leaching potential in saturated environments should be avoided.
- Storage of As-rich mine waste in unsaturated environment is preferred.

Conclusions

- Analysis of background data can identify geochemical processes occurring at the field scale
- Geochemical characterization testing can provide data to help explain site observations, and provide data on how mining activities will modify or amplify these processes.
- Overall, data gained from field observations reduces uncertainty around prediction of metal behaviour in a future mining environment and increases confidence in water quality predictions

