Voisey's Bay Nickel Mine: A unique approach to mine rock management in the 1990s with a follow-up assessment in 2017

Ron Nicholson, Sarah Barabash, Daniel Skruch, Derek Amores, <u>EcoMetrix</u> <u>Incorporated</u>

> Erin Cullen and Perry Blanchard, Vale Newfoundland and Labrador (VNL)

> > W.A. Napier Argonaut Gold

29-30 November 2017

24rd ANNUAL BRITISH COLUMBIA-MEND ML/ARD WORKSHOI

The Players

- INCO acquire Voisey' Bay deposit in 1996 for \$4.3B
- INCO's <u>Voisey's Bay Nickel Company</u> (VBNC)
- Vale acquires INCO in 2006 and operates the Voisey's Bay mine

The Context

- Discovery of 32 Mt Ovoid Massive Sulphide Ni-Cu deposit
- Identification of significant underground resource
- EIS completed between 1996 1999 with a Mine Rock Management plan
 - Using PAG identification of 0.2%S or greater
- Project on hold for due to incomplete negotiation with stakeholders
- Negotiations with stakeholders on necessary agreements concluded in 2002
- Started Mining the Ovoid (open pit) in 2005
 - 0.2%S used in start of operation from 2005 to present
- 2016 Plans expansion to mine underground
- Request from regulator to review mine rock management criteria and plans

The EIS (1996-99)

- Recognized early that this deposit is sulphide rich and appropriate waste rock management will be required
- Need to identify:
 - non-reactive mine rock that can safely be deposited on-land, and;
 - potentially reactive mine rock that should be stored underwater as a mitigative measure
- All tailings to be stored underwater (PAG)

Precautionary Principle

Adopted a precautionary principle regarding PAG rock:

Assume all mine rock is potentially reactive until proven otherwise

1996-1997 Test Program

- Extensive analyses and testing provided confidence
- Static Tests -more than 500 analyses for:
 - Metal Content
 - Acid Base Accounting (ABA-includes Sulphur)
- Kinetic tests (assess reactivity)
 - 22 Humidity Cells / 18 Column tests
 - 58 Oxygen Consumption Measurements

Mine Rock Investigation Flow Chart

Phase I

Summary of Key Results (1997 EIS)

- Relatively simple geology with two main types of mine rock that are easy to recognize
 - Low-Sulphur "Gneiss" (light colored)
 - Sulphur-bearing "Intrusive" (dark colored)
- Sulphur content is the KEY indicator of available metals and of reactivity

Frequency Analysis of Sulphur in Gneiss

Sulphur %

EcoMetrix

Frequency Analysis of Sulphur in Intrusive Rock

NP/AP Ratio vs. Total Sulphur in Gneiss

Conclusions of 1997 Study

- Overburden is non-reactive
- Intrusive rock is assumed to be reactive and all will be placed underwater
- The non-reactive Gneiss represents more than 90% of the mine rock from the open pit that can be safely deposited on-land

Conclusions of 1997 Study (cont.)

- Results show that a 0.2% sulphur content is a conservative cut-off value to separate reactive and non-reactive mine rock
- Segregation procedures and protocols based on sulphur content are practical and achievable during mining

Recommendations of 1997 Study

- Humidity cells and columns continuing
- Underwater testing of;
 - Mine Rock
 - Tailings
 - Potential surface barriers

29-30 November 2017

14

Current Operating Parameters

- Use of 0.2%S to identify non-PAG
- Assays blast holes and classify material prior to blasting
- Define non-PAG allowing 5 m buffer from 0.2%S zones
- All PAG material is placed sub-aqueously for final storage
- Non-PAG material to the CRD pile adjacent to the pit
- Approximately 10 Mt of non-PAG rock with an average of 0.06 %S in 2017

2016 Review of Mine Rock Management

- Development Plan for underground expansion submitted in 2015
- Request from regulator to review mine rock management criteria and plans

The 2016 Review

- Original document by BEAK (1997) and follow up studies
- Reviewed in the context of more recent guidance (Price, 2009; GARD Guide, 2009) and EXPERIENCE since 1997
- Found criteria of 0.2% is reasonable
- Questioned "effectiveness" of NP (Sobek) used in the assessment
- Suggested additional assessment of "effective" NP

The 2016 Review

- Sobek and Carbonate NP values available in the database
- New samples collected and characterized
- Effective NP assessed in the lab

Neutralization Potential Ratio (NPR)

 Effective NP likely between Sobek and Carbonate values

NP Concepts Overview

NP Method	Method Overview
Sobek-NP	 Excess HCI addition (down to pH < 2.0), digestion & back-titration with NaOH to pH 8.3
	 Includes carbonates & other potential buffers "outside" relevant environmental of pH < 6.0 (e.g. aluminosilicates); <i>typically overestimate</i>
Carbonate-NP	 Based on <u>Inorganic Carbon</u> analysis (as % CO₂) converted to (%CO₃) & Carbonate-NP; <i>typically conservative</i>
Assessing	Operationally, "readily available" NP able to maintain pH~ 6.0
"Effective-NP"	 Bracket an Eff-NP using two approaches (1) Titrations with Acid (2) Batch Phased Acid Additions

Recommendations from 2016 Review

- Asses effective NP "available" to maintain pH of 6.0 or greater
- Reassess cut-off criteria based on effective NP
- Test program initiated in 2016, using core samples and rock from open pit

Results 1: Titration-Effective NP

- Rates very slow not practical to define an Eff-NP
- At 1200 h, sporadic pH increases occur (pH >6.0)
- Enderbite Titration NP at less than 15% Sobek-NP

Results 1: Titration-Effective NP

								· · ·					
	ABA				_	Litration E	xperiment	S		_			
Rock Type	Carb-NP	Sobek NP (kg CaCO3/t)	Titration Effective NP		Expressed as Percent Sobek-NP		*pH From Last Acid Addition	Last pH Reading		Total Experiment Time	λ,	pH Status From Last cid Addition	
Units				%	pН		ınit		Days				
Enderbite	0.4	15	2.0		14		5.74	6.26					
	0.6	15	1.7		12		5.74	6.00		52		inoroocing	
	0.8	17	1.5		9		5.70	6.30		- 55		licieasing	
	1.3	15	3.5		23		5.78	6.44					
Paragneiss	1	6.3	2.2		35		5.86	6.18					
	4.3	8.8	1.5		17		5.80	6.25		52		increasing	
	0.5	7.9	3.3		41		5.85	6.30		<u> </u>			
Troctolite	0.4	24	3.1		13		5.83	6.26					
	2	25	1.9		8		5.76	5.89					
	2.6	22	3.2	Π	15	\square	5.78	6.26		48		increasing	
	2	34	3.5	Π	10	7	5.91	6.25	Π				
	0.8	29	2.7		9		5.85	6.11					
*Last acid ad	dition done w	ithin the last 40	0 hours (17	ď	ays)								

Results 2: BPAA-Effective NP

- 2 phase Bulk Acid Additions
- Only able to recover (pH > 6.0) from 1st bulk acid addition; plateaued (pH < 6) after 800H
- Enderbite pH vs. Time sample plot

Results 2: BPAA Eff-NP

• Batch Phased Acid Eff-NP (as % Sobek-NP)

Rock Type		ABA Analysis		1st P	hase Parci	Acid	Ad	ldition	2nd Phase Batch Acid Addition					
	Sample Location	Carb-NP	Sobek-NP	BPAA - ENP	Percent Sol	oek-NF	Recovered to pH>6?		Cumulative BPAA - ENP	Cumulative Percent Sobek-NP	Recovered to pH > 🤅		Terminal pH (Within approx. last 200 hours)	
	Units	kg CaCO3/t		kg CaCO3/t	%				kg CaCO3/t	%			pH unit	
ENDERBITE		0.4	15	4.8	32			Yes	6.6	44	No		5.15	
	SE Extension	0.6	15	4.8	32			Yes	8.4	56	No		4.96	
		1.3	15	4.8	32			Yes	6.5	44	No		5.25	
	RB Ramp	0.8	12	4.6	39			Yes	5.2	43	Yes		6.12	
		1.3	14	4.2	30			No	4.2	30			5.92	
	ED Conveyor	0.8	17	4.8	28			Yes	6.0	35	No		5.78	
		2.0	17	6.0	36			Yes	6.0	36			6.25	
	RB Ramp Churchill Province	4.3	9	2.4	27			Yes	4.8	54	No		5.64	
		0.5	8	2.4	30			Yes	4.7	60	No		4.95	
PARAGNEISS		1.1	6	2.4	38			Yes	4.8	75	No		5.4	
FARAGINEIOO		2.1	10	3.5	37			Yes	3.5	37			6.37	
		1.8	11	3.5	32			No	3.5	32			5.75	
		1.1	12	4.7	39			No	4.7	39			5.97	
TROCTOLITE	Reid Brook	1.6	43	9.7	23			No	9.7	23			5.54	
		1.9	25	6.9	28			Yes	7.5	30	No		5.89	
		2.6	22	5.8	26			Yes	8.1	37	No		5.89	
	SE Extension	0.4	24	5.9	25			Yes	5.9	25			6.02	
		0.8	29	8.1	28			No	8.1	28			5.2	
		2.0	34	8.4	25			Yes	10.8	32	No		5.28	
		1.3	32	9.6	30			No	9.6	30			5.36	

Batch Acid Titrations -Paragneiss

Batch acid addition of a portion of the Sobek-NP
 – 6 Paragneiss Tests

Sobek-NP to Effective-NP

- Enderbite
 - 30% of Sobek-NP is effective
- Paragneiss
 - 30% of Sobek-NP is effective
- Troctolite
 - 20% of Sobek-NP is effective
- Further investigations can use Sobek-NP to estimate Effective-NP

Neutralization Potential Ratios

Effective-NPR and Sulphur

Mine Rock Management Conclusions

- Total sulphur content used as a standalone predictor of ARD
- The sulphur content of 0.2% S appears reasonable based on effective NP
- A 0.1%S value to identify PAG and non-PAG materials will be more conservative
- Carbonate content not a reliable predictor of Effective-NP at Voisey's Bay
- Should assess metal leaching characteristics to confirm low risk for rock with less than 0.1%S

The Work Continues

- Field investigation in progress to evaluate the behaviour of the non-PAG rock in the CRD
- Confirmation of S criterion and investigation of metal leaching within the field "kinetic test cell"

