Future ML/ARD Mitigation Approaches and Closure Planning for Nyrstar Myra Falls

Paul Ferguson¹, Christoph Wels¹, and Nicole Pesonen²

Robertson GeoConsultants Inc.

Consulting Engineers and Scientists for the Mining Industry *www.robertsongeoconsultants.com*

\circ Introduction

o 'Base Case' Closure Scenario

O Water Quality Predictions

 $_{\odot}$ Initial Assessment of Lynx SIS Performance

o Path Forward

'Base Case' Closure Scenario

o Closure objective: Achieve water quality objectives for Myra Creek

- Provincial WQGs: screening-level benchmarks
- Science-Based Environmental Benchmarks (SBEBs) by 2020

• ML/ARD Prevention and Mitigation Approach:

- 1. Operate the NOD and Lynx SIS
- 2. Flood PAG rock and tailings underground
- 3. Cover the WRDs and TDFs

• Amec Foster Wheeler: <u>Closure engineering</u>

- Closure cover design and physical stability assessments
- Surface water diversions, e.g. LLDD
- Precipitation runoff management, e.g. decants, spillways, etc.

• RGC: <u>SIS designs and load balance assessment</u>

- Assess NOD performance and conceptual Lynx SIS design
- Predict future conditions (Zn loads and concentrations)

'Base Case' Closure Scenario for Old TDF

From Amec Foster Wheeler (2016)

'Base Case' Closure Scenario for Lynx TDF Berm

From Amec Foster Wheeler (2016)

Major Site Reaches and Model Zones (I to VII)

Water and Contaminant Load Balance Model (GoldSim)

UBC Watershed Model

Fig. 1 - U.B.C. Watershed Model generalized flow chart.

Figure from Quick and Pipes (1977)

Zn Concentrations in Myra Creek at TP4, 1981 to 2017

Modeling Approach and Scenarios

- GoldSim model run in "prediction mode"
- Modeled 'Scenarios':
 - Lynx SIS in Zones I and II
 - Old TDF Closure:
 - Re-grade and cover WRD#6 and
 - Cover tailing surface to reduce contact water
 - Final Lynx TDF (at closure and covered)
 - Additional seepage recovery in Zone I and IV
 - Pump from disconnected NOD
 - Pumping wells in ETA/Cookhouse area
- Closure strategies implemented sequentially, so the effect of each change is additive, i.e. [Zn] progressively decreases

Predicted Conditions, Lynx SIS Scenario

Key Model Predictions:

Predicted Zn Concentrations in Myra Creek

Lynx SIS Pumping Wells (Phase I SIS)

Cross-Section (Lynx SIS), East-to-West

Simulated Drawdown (65 L/s) – Low Flow Conditions

Lynx SIS – Constant Level Pumping System

Pumping Rates and Zn Captured (since October 9th)

2.8 t Zn captured: ~50% of Zn to NOD

Inferred Capture Zone – High Flow (November 2017)

Simulated Zn (Additional SIS), 2012/2013 Water Year

Lynx SIS + Pumping from disconnected NOD + SIS in ETA/Cookhouse Area ('Best Case' Scenario)

Options to Further Reduce [Zn], 'Base Case' scenario

Summary

o [Zn] in Myra Creek has been substantially reduced by the NOD

• Further reductions are predicted, as initial observations suggest:

- Phase I Lynx SIS is working as intended
- Phase II (trench) could intercept perched seepage
- SBEBs for Zn, Al, Cd and Cu (by 2020) will clarify post-closure water quality objectives for Myra Creek

Path Forward

- Refine the 'Base Case' closure scenario
 - Cover designs
 - Lynx SIS performance assessment
 - Post-closure water treatment requirements
- Evaluate an alternative closure scenario that emphasizes ML/ARD prevention
- Consult stakeholders (MEM, MOE, SPPAC, First Nations)

Path Forward (2018) – Cross Valley Embankment

Buttle Lake

Cross Valley _ Embankment

Alternative Closure Scenario ('Myra Wetland')

Conceptual Cross-Section of Cross Valley Embankment (98% of PAG mine waste submerged)

Dam Crest	Dam Crest	Reservoir	Upstream Shell	Downstream Shell
Height, m	Elevation, m	Volume, m ³	(PAG), m ³	(Non-PAG), m ³
31	3380.5	7,200,000	300,000	1,000,000

Conceptual Plan View ('Pool Option')

Collaborators and Contributors

RGC Associates

- Pat Bryan
- Shannon Shaw
- John Brodie

NMF Personnel

- Katie Babin
- Craig Schweitzer
- Ivor McWilliams
- Scott Skagford
- Sharlene Henderson

Amec Foster Wheeler

• Dan Hughes Games

RGC Staff

- Jack Caldwell
- Aida Farkish
- Alex Trapp
- Amanda Schevers
- Tara Raketti

Additional Acknowledgements

• Bill Price

